

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS ENGENHARIA ELÉTRICA

Alexandre Luiz da Silva

TRABALHO DE CONCLUSÃO DE CURSO MODELAGEM DA REDE DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA DA UFLA CAMPUS LAVRAS UTILIZANDO O OPENDSS

Nepomuceno 2021

MODELAGEM DA REDE DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA DA UFLA CAMPUS LAVRAS UTILIZANDO O OPENDSS

Trabalho apresentado como requisito parcial para a Conclusão do Curso de Bacharelado em Engenharia Elétrica do Centro Federal de Educação Tecnológica de Minas Gerais

COMISSÃO EXAMINADORA

Prof. Márcio Wladimir Santana

Prof.^a Silvia Costa Ferreira

Prof. Joaquim Paulo Da Silva

Nepomuceno, de de 2021

Dedico este trabalho aos colegas e professores do Centro Federal de Educação Tecnológica de Minas Gerais Campus Nepomuceno, por onde iniciei uma nova conquista, e um sonho de criança. Sou muito grato à instituição pelo aprendizado, trabalho e profissional que me tornei.

AGRADECIMENTOS

Agradeço à Deus, por me dar forças e permitir chegar até aqui.

Ao meu orientador, Márcio Wladimir Santana, pela excelência na orientação, pelos ensinamentos passados desde o ensino técnico e pelo apoio fundamental na minha formação profissional.

A professora Silvia, pelo apoio e conhecimentos passados, e também por se dispor a participar da banca examinadora.

A Alessandra, minha esposa, pelo amor e pela compreensão que me dedicou durante essa jornada.

As minhas filhas Juliane e Maria Julia pela oportunidade de crescimento como pessoa.

Ao Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), pela minha formação profissional e pessoal.

A todos que, com boa intenção, colaboraram para a realização e finalização deste trabalho.

"O homem não teria alcançado o possível se, repetidas vezes, não tivesse tentado o impossível." (Max Weber)

RESUMO

A energia elétrica está presente em inúmeros atos cotidianos da sociedade moderna, mas para que a energia que alimenta os dispositivos elétricos seja distribuída aos consumidores com segurança e qualidade, o sistema elétrico convencional busca novos avanços, focando principalmente na modernização e otimização da rede. Nos dias atuais, as fontes renováveis então em ascensão, e a energia solar fotovoltaica interligada à rede elétrica se destaca entre as outras. Desta forma, o estudo de métodos que simulem o comportamento real de uma rede de distribuição de energia elétrica, passa a ter signicativa importância. Uma das formas de simular este comportamento é por meio de modelos matemáticos das redes de distribuição de energia elétrica. Estes descrevem o comportamento de uma linha de distribuição de energia elétrica, com as mesmas características do sistema real, como parâmetros do cabo, tensão, corrente e carga. Os principais desafios dos estudos de fluxo de potência em sistemas de distribuição de energia elétrica estão relacionados às características específicas destes sistemas, tais como sua dimensão, ausência de dados precisos e as altas relações reatância-resistência dos transformadores. Visando superar estes desafios, a presente pesquisa visa realizar a modelagem da rede de distribuição primária (rede de média tensão) e secundária (rede de baixa tensão) da Universidade Federal de Lavras - UFLA. As simulações serão realizadas com o auxílio do software de código aberto OpenDSS. Neste contexto, a rede elétrica do campus será modelada, por meio do levantamento dos parâmetros do alimentador e das principais características relacionadas aos transformadores, cabos e cargas, criando um modelo deste sistema para estudos de fluxo de potência. Estes dados representam o sistema real e serão utilizados para as simulações computacionais.

Palavras-chave: Sistema elétrico de potência; Linhas de distribuição; Modelagem OpenDSS.

LISTA DE FIGURAS

FIGURA 1 - Vista aérea da UFLA	21
FIGURA 2 - Cabine de Medição e proteção da UFLA	22
FIGURA 3 - Representação pelo google maps do sistema da UFLA por meio das coordenad	las
geográficas dos postes	24
FIGURA 4 - Placa de dados de um dos transformadores utilizado no estudo	25
FIGURA 5 - Representação dos trechos com cabos de 50 mm ² e 150 mm ²	27
FIGURA 6 - Miniusina fotovoltaica da UFLA	29
FIGURA 7 - Placa do transformador usina fotovoltaica	32
FIGURA 8 - Perfil de demanda UFLA	33
FIGURA 9 – Circuito da UFLA modelado no openDSS com fluxo radial	37
FIGURA 10 – Potência de carregamento dos transformadores em kVA, cenário A	38
FIGURA 11 – Circuito da UFLA modelado no OpenDSS com fluxo radial, cenário A	39
FIGURA 12 – Perdas no cenário A	40
FIGURA 13 – Potência de carregamento dos transformadores em kVA, cenário B	42
FIGURA 14 – Circuito da UFLA modelado no OpenDSS com fluxo radial, cenário B	43
FIGURA 15 – Perdas no cenário B	43
FIGURA 16 – Potência de carregamento dos transformadores em kVA, cenário C	45
FIGURA 17 – Circuito da UFLA modelado no OpenDSS com fluxo radial, cenário C	46
FIGURA 18 – Perdas no cenário C	47
FIGURA 19 – Potência de carregamento dos transformadores em kVA, cenário D	49
FIGURA 20 – Circuito da UFLA modelado no OpenDSS com fluxo radial, cenário D	50
FIGURA 21 – Perdas no cenário D	50
FIGURA 22 – Perfis de tensão para os cenários analisados	52

LISTA DE TABELAS

TABELA 1 - Pontos de conexão em tensão nominal superior a 1 kV e inferior a 69 kV	15
TABELA 2 - Relação dos postes da área de estudos	24
TABELA 3 - Relação dos transformadores e pontos de carga em MT	25
TABELA 4 - Dados técnicos dos cabos de BT	28
TABELA 5 - Dados técnicos dos cabos de MT	28
TABELA 6 - Características dos módulos fotovoltaicos	30
TABELA 7 - Características dos inversores	31
TABELA 8 - Média e desvio padrão para a distribuição normal de probabilidades	35
TABELA 9 - Resultado do fluxo de potência de forma radial sem GD	37
TABELA 10 - Resultado do fluxo de potência de forma radial cenário A	40
TABELA 11 - Resultado do fluxo de potência de forma radial cenário B	44
TABELA 12 - Resultado do fluxo de potência de forma radial cenário C	47
TABELA 13 - Resultado do fluxo de potência de forma radial cenário D	51
TABELA 14 - Distribuição de cargas normais cenário A	57
TABELA 15 - Distribuição de cargas normais cenário B	60
TABELA 16 - Distribuição de cargas normais cenário C	61
TABELA 17 - Distribuição de cargas normais cenário D	66
TABELA 18 - Distribuição dos perfis de tensão dos cenários	69

LISTA DE SIGLAS

- ANEEL Agência Nacional de Energia Elétrica
- BT Baixa Tensão
- CEFET Centro Federal de Educação Tecnológica
- CEMIG Companhia Energética de Minas Gerais
- COM Component Object Model
- PD Power Delivery Element
- PC- Power Conversion Element
- DSS Distribution System Simulator
- EPRI Electric Power Research Institute
- ESAL Escola Superior de Agricultura de Lavras
- GD Geração Distribuída
- GPS Global Positioning System
- IEA International Energy Agency
- IEEE Institute of Electrical and Electronic Engineers
- MT Média tensão
- **OPENDSS** Open Distribution System Simulator
- SEP Sistema Elétrico de Potência
- UFLA Universidade Federal de Lavras

SUMÁRIO

1	INTRODUÇÃO	12
1.1	Objetivos	12
1.2	Porganização do trabalho	13
2	REFERENCIAL TEÓRICO	14
2.1	Sistemas de distribuição de energia elétrica	. 14
2.2	Componentes de um sistema de distribuição	. 15
2.3	O OpenDSS	16
2.3	.1 Estrutura do OpenDSS	16
2.3	2.2 Elemento <i>BUS</i>	17
2.3	3.3 Elemento <i>CIRCUIT</i>	17
2.3	.4 Elemento TRANSFORMER	17
2.3	5.5 Elemento <i>LINE</i>	18
2.3	.6 Elemento LOAD	18
2.3	7.7 Elemento <i>PVSYSTEM</i>	19
2.3	8.8 Modo de Simulação	19
2.4	Modelagem de sistemas de distribuição utilizando o OpenDSS	19
3	METODOLOGIA	21
3.1	A UFLA	.21
3.2	Características do sistema de distribuição da UFLA	21
3.3	Modelagem do sistema de distribuição da UFLA	22
3.3	.1 Levantamento das coordenadas geográficas dos postes e transformadores	. 23
3.3	2.2 Características dos transformadores	. 24
3.3	3.3 Características dos cabos	26
3.3	.4 Levantamento das instalações fotovoltaicas e características técnicas	28
3.3	.4.1 Usina solar fotovoltaica da ABI	28
3.3	.4.2 Usina solar fotovoltaica próxima ao Centro de Eventos	29

3.3	.5 Curvas de demanda de energia elétrica da UFLA	32
3.2	.6 Distribuição das cargas nos transformadores	33
4	RESULTADOS E DISCUSSÕES	36
4.1	Modelo do sistema de distribuição da UFLA no OpenDSS	36
4.2	Cenário A: analises com carregamento médio de 6,66%	38
4.3	Cenário B: analises com carregamento médio de 24,61%	45
4.4	Cenário C: analises com carregamento médio de 5,33%	48
4.5	Cenário D: analises com carregamento médio de 29,53%	52
5	CONCLUSÃO	54
BII	BLIOGRAFIA	55

1 INTRODUÇÃO

Nos últimos anos o uso de dispositivos elétricos tem aumentado consideravelmente, impulsionando mudanças em todos os setores onde utiliza a rede de energia elétrica. Entretanto, o Sistema Elétrico de Potência (SEP) em sua configuração atual, embora venha sendo aprimorado ao longo do tempo, incorporou poucos recursos tecnológicos disponíveis, deixando de agregar uma série de informações e melhorias na distribuição de energia elétrica. Além disto, o aumento na demanda tem ampliado o uso de geração distribuída solar fotovoltaica advinda de fontes de energia renováveis, que é empregada por meios de sistemas conectados à rede elétrica. Estas utilizam a tecnologia de informação e equipamentos digitais com interface para os usuários, visando controlar a geração de energia distribuída.

Segundo a IEA (2020) por meio de seu relatório anual, estima-se que a energia solar fotovoltaica será a fonte com maior crescimento no mundo e que a partir de 2022 crescerá ano após ano. Assim, o estudo de métodos que viabilizam a representação e a simulação do comportamento de uma rede elétrica se faz importante. Uma das formas de realizar este processo é através da modelagem matemática, com base em modelos que possam descrever o comportamento dinâmico do fornecimento de energia, a partir de suas principais propriedades e/ou de um conjunto de dados experimentais.

Neste contexto, a modelagem matemática, assim como as demais técnicas para a otimização dos sistemas de distribuição de energia elétrica, configuram-se como ferramentas fundamentais. Desta forma uma das ferramentas que podem ser utilizadas para o planejamento apropriado da inserção de sistemas de Geração Distribuída (GD) para uma implementação futura, são os estudos de fluxo potência e análise de perfil de tensão e corrente.

1.1 Objetivo

O objetivo deste trabalho é estudar o fluxo de potência e os perfis de tensão na rede de distribuição de energia elétrica no campus da UFLA. As primeiras etapas, incluindo modelagem da rede e estudos de fluxo de potência, foram realizados por Oliveira (2021). Entretanto, devido a extensão da rede de distribuição do campus apenas uma porção do sistema foi considerada no estudo. Dessa forma, este trabalho dá continuidade ao levantamento de dados da rede de distribuição para complementar o modelo já existente.

Para realização destes estudos, utilizar o maior número de parâmetros possíveis da rede de média e baixa tensão, se torna indispensável. A modelagem foi realizada utilizando o software OpenDSS, e simulações do fluxo de potência foram realizadas para avaliar os perfis de tensão e o fluxo de potência.

1.2 Organização do trabalho

Após este breve capítulo introdutório, no capítulo 2 é feita uma revisão do estado da arte de sistemas de distribuição de energia elétrica, componentes de um sistema de distribuição, modelagem de sistemas de distribuição utilizando o OpenDSS, e a utilização do software OpenDSS.

No capítulo 3 é descrito a metodologia utilizada, a modelagem do sistema de distribuição da UFLA.

No capítulo 4 é apresentado os resultados e discussões.

Na conclusão apresenta as considerações finais do trabalho e propostas de trabalhos futuros.

Por fim, nos apêndices é apresentado a distribuição de cargas a ser inserida no software OpenDSS para simulação do sistema de distribuição da UFLA.

2 REFERENCIAL TEÓRICO

Neste capítulo são abordados alguns conceitos sobre linhas de distribuição dos sistemas de energia elétrica, bem como uma abordagem sobre a modelagem das redes de distribuição no software de código livre, o OpenDSS.

2.1 Sistemas de distribuição de energia elétrica

O sistema elétrico de potência são grandes sistemas de energia que englobam a geração, transmissão e distribuição de energia elétrica. Na geração, etapa de obtenção e transformação da energia oriunda de fontes primárias. Na transmissão, o passo da condução da energia de onde foi produzida para os centros de consumo. Nesta etapa, acontece também a interligação dos sistemas por meio das linhas de transmissão de alta tensão. Neste momento, ocorre mudança de tensão. Na distribuição, ocorre a redução de tensão para níveis mais seguros dentro das subestações rebaixadoras. Para este processo dá-se o nome de distribuição primária. A distribuição secundária ocorre depois dos transformadores, onde acontece novo rebaixamento para utilização segura em equipamentos elétricos. Esta é a rede de distribuição de baixa tensão. A distribuição é o segmento do setor elétrico dedicado ao fornecimento de energia elétrica aos usuários tanto de grande quanto aos de médio e pequeno portes, com segurança, qualidade adequada e a qualquer momento (KAGAN, 2005).

Segundo a ANEEL (2012), o sistema de distribuição é composto pela rede elétrica e pelo conjunto de instalações e equipamentos elétricos que operam em níveis de alta tensão (superior a 69 kV e inferior a 230 kV), média tensão (superior a 1 kV e inferior a 69 kV) e baixa tensão (igual ou inferior a 1 kV).

De acordo com o Modulo 8 PRODIST (Procedimentos de Distribuição), os valores de tensão obtidos por medições devem ser comparados à tensão de referência, a qual deve ser a tensão nominal ou a contratada, de acordo com o nível de tensão do ponto de conexão, os valores nominais devem ser fixados em função dos níveis de planejamento do sistema de distribuição de modo que haja compatibilidade com os níveis de projeto dos equipamentos elétricos de uso final.

Na UFLA os níveis de tensão são compreendidos de acordo com a tabela 1, as leituras a ela associadas classificam-se em três categorias: adequadas, precárias ou críticas, baseandose no afastamento do valor da tensão de leitura em relação à tensão de referência.

Tensão de Atendimento (TA)	Faixa de Variação da Tensão de Leitura	
	(TL) em Relação à Tensão de Referencia	
Adequada	$0,93 \le TL \le 1,05TR$	
Precária	$0,90 \le TL \le 0,93TR$	
Crítica	$TL \le 0,90 \text{ ou } TL > 1,05TR$	

Tabela 1 - Pontos de conexão em tensão nominal superior a 1 kV e inferior a 69 kV

Fonte: ANEEL (2020)

2.2 Componentes de um sistema de distribuição

As redes de distribuição de energia elétrica no Brasil constituem-se de uma rede complexa de elementos que tem por finalidade conduzir a energia desde o local de sua produção até o lugar onde será consumida. É inviável representar todas as particularidades da rede como localidade, perfil de carga específico, dentre outros. Segundo Kagan (2005), Quinn e Ross (2008), algumas características dos componentes que compõe o sistema de distribuição e também das estações transformadoras devem ser observadas.

As principais características necessárias para modelagem dos sistemas de distribuição são:

• Características dos cabos alimentadores: a impedância, a configuração, disposição dos cabos nos trechos, tensão, comprimentos, máxima corrente admissível, modelo e fabricante dos cabos, são alguns dos parâmetros necessários para o modelo. Os dados utilizados poderão afetar significativamente os resultados de análise de contingência ou queda de tensão.

• Dados do transformador: valores de impedância do transformador, relação X/R (relação entre as reatâncias reduzidas de Thévenin nos pontos de falta divididas pelas resistências reduzidas de Thévenin no ponto de falta), potência nominal, potência de base, tensão de base do primário e secundário, a taxa do TAP e a impedância de aterramento, são parâmetros necessários para o modelo.

• Dispositivos de proteção: dados dos dispositivos de proteção e comutação (fusíveis, interruptores, limitadores de corrente, protetores de rede e para-raios) corrente nominal, tensão nominal e classificações de interrupção são parâmetros que podem ser necessários para modelar os dispositivos de proteção.

• Mapas de roteamento e localização geográfica: mapas de roteamento do primário e secundário, desenhos, ou outros diagramas de rede que identifiquem a localização da rede

primária, estações transformadoras e da rede secundária permitem que a rede seja representada com exatidão dentro do ambiente de modelagem.

• Demanda máxima: verificar a demanda máxima que o circuito comporta também é um dado relevante na modelagem da rede de distribuição. E também o período do ano que ocorre a máxima demanda.

Tipo de rede: o tipo de rede representa se o sistema é monofásico, bifásico e trifásico.
 A localização de alimentadores e redes secundárias permite que a rede seja representada com precisão dentro do ambiente de modelagem.

• Perfis de carga: o tipo de consumo é importante para determinar a quantidade de potência ativa e reativa absorvida da rede secundária.

2.3 O OpenDSS

O software OpenDSS é um algoritmo de simulação de fluxo de potência que realiza as mais variadas análises relacionadas ao planejamento do sistema de distribuição elétrica e à qualidade da energia. Os modos de solução quase estática permitem a execução de simulações sequenciais ao longo do tempo, e assim, a análise do sistema pode ser realizada a qualquer hora do dia.

O desenvolvimento do software OpenDSS iniciou em 1997 na *Electrotek Concepts*, Inc. por Roger Dungan e Thomas McDermott. Em 2004 foi comprado pela EPRI Solutions e, em 2008, tornou-se um programa de código aberto, chamado de OpenDSS. A análise de sistemas com Geração Distribuída (GD) foi o fator motivador de desenvolvimento desta ferramenta, porém se destaca que devido aos novos conceitos dos sistemas Smart Grids (Redes Inteligentes) novas funcionalidades foram desenvolvidas cujas características tornam o OpenDSS uma ferramenta versátil para simulações no ambiente da distribuição de energia (SILVA JUNIOR, 2010).

2.3.1 Estrutura do OpenDSS

O software OpenDSS é um programa baseado em linhas de comandos. Para definir os circuitos, o usuário pode escrever as linhas de comandos, ou estas podem ser acessadas de um arquivo de texto fixo ou de programas externos (FREITAS, 2015).

Basicamente o programa difere os elementos do circuito que transferem energia (PD-Power Delivery Element), pode-se citar: linha, transformador, indutor e capacitor, dos elementos que convertem energia (PC- Power Conversion Element), pode-se citar: carga, gerador, bateria e geração distribuída.

2.3.2 Elemento Barra (BUS)

De acordo com Freitas (2015) a barra no OpenDSS é um elemento de circuito que contém os nós. Sua função principal é conectar em seus nós os terminais dos elementos elétricos que compõem o circuito. Por intermédio da barra pode-se ter acesso ao valor das tensões nodais em relação ao nó de referência (nó zero).

Pode-se definir barras com N nós, e para conectar os terminais dos elementos na barra cita-se os nós correspondentes, como por exemplo em uma rede trifásica a 4 fios onde desejase conectar um elemento na fase A e C, referencia-se o elemento a barra ao nó 1 e 3. Se não definido os nós ao qual vai ser conectado o elemento, o OpenDSS tem uma definição automática dos nós, iniciando a contagem dos nós em 1 e começando a conexão do elemento por esse nó.

2.3.3 Elemento Circuito (CIRCUIT)

O elemento *Circuit* é utilizado como o equivalente de Thévenin da rede da subestação, vista pelo alimentador. É um elemento de conversão de energia que possui apenas um terminal. É permitido apenas um elemento *Circuit* por sistema simulado. Para definir o elemento *Circuit*, alguns parâmetros principais são: tensão de linha nominal em kV, nome da barra em que se deseja conectar o elemento, impedância zero e de sequência positiva do sistema, potência de curto-circuito trifásico e monofásico em MVA.

2.3.4 Elemento Transformador (TRANSFORMER)

No OpenDSS pode-se configurar todos os tipos de transformadores existentes no mercado, como por exemplo conexão delta-estrela aterrada, estrela-estrela aterrada, etc. De acordo com Freitas (2015) para caracterizar o transformador deve-se definir a quantidade de

enrolamentos, número de fases e as barras as quais o transformador está conectado. Outros parâmetros para sua definição são: tensão nominal de linha do enrolamento em kV, potência nominal do terminal em kVA, reatância em série, porcentagem de perdas com e sem carga.

2.3.5 Elemento Linha (LINE)

As linhas são elementos de transporte de energia com dois terminais e são caracterizadas por uma impedância, que podem ser modeladas diretamente no comando *New Line*, por meio de componentes simétricos se o sistema for equilibrado. Entretanto, se o sistema é desequilibrado utiliza-se a forma matricial de impedâncias, sendo necessária a matriz de admitância nodal, que é construída a partir de seus parâmetros intrínsecos como impedâncias sequenciais, resistências e reatâncias. Para simplificar o código no programa, o OpenDSS tem a possibilidade de uso de uma função chamada *LineCode*, com ela define-se todas as características de arranjo de linha e armazena em uma variável e após, durante a programação ao definir uma linha, apenas declara-se seu *LineCode*.

Os principais parâmetros para definir o *LineCode* são: número de fases, frequência de base, resistências e reatâncias zero e de sequência positiva, por unidade de distância, no caso de linhas equilibradas, e matrizes de resistências e reatâncias, por unidade de distância, no caso de linhas desequilibradas. Ao definir a linha apenas será necessário informar seu *LineCode*, comprimento e unidade de medida, e as barras as quais será conectada.

2.3.6 Elemento Carga (LOAD)

As cargas são elementos que transformam energia elétrica em um outro tipo de energia, por isso possuem apenas um terminal. Para caracterizá-la é necessário que se defina, ao menos, um par de valores mencionados abaixo: potência ativa nominal em kW e fator de potência (FP); potência ativa nominal em kW e potência reativa nominal em kvar; potência aparente nominal em kVA e fator de potência (FP). Para definir o elemento *load*, além dos parâmetros listados acima, os seguintes parâmetros são necessários: tensão nominal, número de fases, barra a qual está conectada, e pode-se definir uma curva de carga, se preciso for.

2.3.7 Elemento Geração Fotovoltaica (PVSYSTEM)

A geração fotovoltaica presente no OpenDSS é um modelo que combina o gerador fotovoltaico e o inversor para realizar simulações com intervalo de tempo maior ou igual a 1 segundo (FREITAS, 2015). Sendo assim, o inversor é capaz de encontrar o ponto de máxima potência do painel rapidamente, simplificando a modelagem dos componentes individuais, painel fotovoltaico e inversor. De acordo com Freitas (2015), a potência ativa de saída é função da irradiação, temperatura, eficiência do conversor, tensão da rede e da potência nominal do painel no ponto de máxima potência. O ponto de máxima potência é definido a uma temperatura que geralmente é igual a 25 °C, e uma irradiação de 1,0 kW/m². Esta abordagem deve ser adequada para a maioria dos estudos relacionados a interconexão com a rede de distribuição.

Para definição do elemento *PVSystem* os principais parâmetros são: tensão de linha nominal em kV, barra a qual será conectado, potência nominal do inversor em kVA, fator de potência, irradiação nominal, potência nominal no ponto de máxima potência, temperatura nominal, curva de eficiência por potência, curva de potência por temperatura, também são necessários os dados de irradiância e temperatura do local da instalação.

2.3.8 Modo de simulação

Por se tratar de uma ferramenta para análise de circuitos elétricos, no software há diversos modos de simulação, tais como: fluxo de potência, curto-circuito, fluxo de harmônicos, estabilidade e crescimento da demanda. O cálculo do fluxo de potência pode ser executado de diversas formas, modo padrão, diário e anual, modo de Monte Carlo, e ainda um modo que a carga pode variar no tempo (FREITAS, 2015). No modo padrão o cálculo do fluxo de potência é realizado para uma condição onde se pretende conhecer as condições limites do sistema, como por exemplo, para a máxima e mínima demanda. No modo diário o programa calcula 24 vezes o fluxo de potência e no anual 8760 vezes. Para executar o fluxo de potência é necessário setar as tensões de base e o modo. Quando não estipulado o modo, o OpenDSS calcula o fluxo de potência no modo padrão (*snapshot*).

2.4 Modelagem de sistemas de distribuição utilizando o OpenDSS

As mudanças na rede de distribuição com a inserção de sistemas de GD trazem diversos desafios técnicos. Além disso, a modelagem desses novos sistemas tornou-se mais complexa, exigindo análises sofisticadas e algoritmos confiáveis para uma verdadeira descrição do comportamento da rede (RIBEIRO et al., 2020a). Os programas de análise do sistema de distribuição têm evoluído de simples calculadoras de queda de tensão de cargas balanceadas para sistemas sofisticados com interações gráficas que permitem conhecer e quantificar os parâmetros da rede.

Além disso, os métodos de cálculo de fluxo de potência mais conhecidos, como Gauss Seidel e Newton Raphson, podem não mostrar convergência em muitas análises de sistemas de distribuição devido à alta razão (reatância, resistência) e à estrutura radial das redes de distribuição. Como a rede de distribuição tem uma forte tendência a ser desequilibrada entre as fases, tais métodos não são recomendados para trabalhar apenas com modelos de sequência positiva. Ribeiro (2020) e Ronielli (2021) utilizam o método da injeção de corrente trifásica, baseado na decomposição da matriz de admitância nodal que compõe o software OpenDSS e mostraram que os resultados obtidos para o fluxo de potência em sistemas de distribuição apresentaram resultados coerentes com os estudos do sistema de teste do IEEE.

Para solução iterativa, o OpenDSS contempla com duas metodologias de cálculo de fluxo de carga, o método de injeção de correntes nodais e o método de Newton. Segundo (DUGAN, 2010) não se deve confundir o método de Newton do OpenDSS com o método tradicional de Newton-Raphson, pois ambas as metodologias não se baseiam na mesma forma de cálculo.

O OpenDSS, possibilita a construção de redes elétricas com os componentes em arquivos diferentes e depois articulá-los em um arquivo que será executado no mesmo, permitindo a construção da rede de forma fragmentada, uma vez que é possível identificar seu ponto inicial. Assim, há a possibilidade de criação da rede tanto para um único alimentador de uma subestação, como a rede de toda a subestação no caso da necessidade de testar o comportamento da rede elétrica de um alimentador ou da subestação inteira.

3 METODOLOGIA

Os estudos realizados neste trabalho serão aplicados na rede de distribuição de energia elétrica da UFLA, sendo a concessão de fornecimento proveniente da CEMIG Distribuição S/A e distribuição de energia elétrica interna, sob concessão e responsabilidade da própria universidade.

3.1 A UFLA

A UFLA foi fundada em 1908, e em 1938, a então chamada de Escola Agrícola de Lavras passou a ser chamada ESAL. A federalização ocorreu em 1963 e somente em 1994 a instituição tornou-se universidade. Em termos de estrutura, o campus tem uma área de 600 hectares, (seis milhões de metros quadrados) com aproximadamente 237.250 mil metros quadrados de área construída (UFLA,2020b). A Figura 1 mostra a vista aérea do campus da UFLA e suas principais instalações.

Fonte: UFLA (2021)

3.2 Características do sistema de distribuição da UFLA

O sistema de distribuição de energia elétrica da UFLA passou por uma completa reestruturação A implantação do novo sistema está estruturada em quatro etapas principais: rede

de distribuição protegida (novo posteamento, cabeamento, transformadores e iluminação); reestruturação da rede de departamentos e setores que se apresentarem em estado inadequado; instalação de medidores (para que se possa analisar os níveis de consumos, para em caso de baixa qualidade da energia, estabelecer as correções necessárias); e também a adoção de outras formas de energia como a eólica e a solar. No caso do solar, um sistema já está em operação, (UFLA, 2010).

Seguindo com a modernização em seu sistema de distribuição de energia elétrica, em 2018, a UFLA conclui mais uma das etapas na sua rede física: a consolidação de um alimentador exclusivo feito por linhas adjacentes a subestação de distribuição da concessionária da CEMIG mais próxima. Dessa forma, a UFLA é atendida em 13,8 kV, por meio deste alimentador, e com possibilidade de atendimento por outros dois alimentadores não exclusivos como contingência. No ponto de conexão entre a distribuidora e a UFLA, existe uma subestação abrigada conforme Figura 2, contendo medição indireta, disjuntor 15 kV com atuação através de relé indireto do modelo SEG MRI1 com proteção de sobrecorrente temporizado e instantâneo de fase e neutro (ANSI 50, 50N, 51, 51N).

Figura 2 - Cabine de medição e proteção da UFLA

Fonte: UFLA (2018)

3.3 Modelagem do sistema de distribuição da UFLA

De acordo com trabalho de Oliveira (2021), a metodologia utilizada para modelagem do sistema de distribuição da UFLA seguiu as seguintes etapas:

 a) Delimitação da área a ser estudada: a princípio uma parte da rede de distribuição da UFLA já foi modelada e uma outra parcela foi incluída neste trabalho.

 b) Levantamento das coordenadas geográficas dos postes e dos transformadores: foi utilizado o software google maps e o projeto elétrico da universidade para determinar a latitude e longitude dos postes e transformadores existentes.

c) Levantamento das características dos transformadores: os dados dos transformadores foram caracterizados em função de sua potência e tensão nominal, tipo de ligação, carregamento e localização geográfica, com auxílio de uma câmera fotográfica, foram coletados seus dados de placas, em alguns casos ondes as placas estão ilegíveis, utilizamos uma aproximação a partir de dados de fabricante.

d) Levantamento das características dos cabos: foram levantados os dados dos cabos em cada trecho do sistema a ser modelado, tais como seção transversal, fabricante, etc.

e) Levantamento das usinas fotovoltaicas: Na UFLA existem algumas usinas solares fotovoltaicas, umas de grande relevância que foram tratadas nesse estudo e outras de pouca relevância que foram desconsideradas nesse estudo.

f) Inserção dos dados no openDSS: os dados levantados foram usados para alimentar o modelo do sistema de distribuição da UFLA que foi criado no OpenDSS, para o estudo de impactos de qualidade de energia.

O carregamento dos transformadores foi estimado com base na quantidade de circuitos conectados ao secundário do mesmo.

3.3.1 Levantamento das coordenadas geográficas dos postes e transformadores

Os dados levantados foram as coordenadas geográficas dos postes e transformadores que saem do alimentador principal e percorrem grande parte da extensão da UFLA. Uma parte da área modelada está apresentada na Figura 3. Os pontos indicados no mapa representam os postes levantados em campo. Esta representação dos postes, delimita uma parte da área de estudo e com as coordenadas geográficas definidas, e então foi possível desenvolver a modelagem inicial do sistema no openDSS.

A inserção correta das coordenadas é imprescindível para uma boa representação do modelo, aproximando-o ao máximo da distribuição física da rede existente. Um arquivo com nome buscoords.txt é criado e nele, são inseridas as coordenadas de cada item. A Tabela 2

apresenta um exemplo da inserção de uma coordenada de um poste. Ela contém o nome, a longitude e a latitude, respectivamente:

	3 1			
Alocação dos postes				
N° poste Latitude Longitude				
P272	-4497886	-2122567		

Tabela 2- Relação postes da área de estudo

Fonte: Do autor (2021)

Figura 3 – Representação pelo google maps do sistema de distribuição da UFLA por meio das coordenadas geográficas dos postes

Fonte: Do autor (2021)

3.3.2 Características dos transformadores

Dentro da área de estudo delimitada, foi realizado o levantamento detalhado dos transformadores coletando fotos das placas de dados com as suas principais características. A Figura 4 apresenta os dados de um dos transformadores com informações levantadas em campo. Estes transformadores foram inseridos no modelo da rede de distribuição da UFLA por meio

das suas características de potência e de impedância série (z%), utilizando o seguinte código no OpenDSS:

New Transformer.T103 Buses = [P279 C103] Conns = [Delta Wye] kVs = [13.8 0.22] kVAs = [30 30 XHL=3.26 sub=y.

Figura 4 – Placa de dados de um dos Transformadores utilizado no estudo

Fonte: Do autor (2021)

Alguns transformadores dentro da área de estudo, estão sem placas de identificação ou com as mesmas ilegíveis, portanto, foram estimadas suas potências através do mapa da rede elétrica na UFLA, fornecido pelo departamento de elétrica do campus. Neste mapa rede estão alocados todos transformadores, exceto os recém instalados. Para estes casos, o levantamento em campo confirmou a presença ou ausência dos equipamentos, e quando possível suas potências nominais. Além disso, nos casos em que a impedância (Z%) do transformador também ficou ilegível na placa, tal característica foi estimada com base em fabricantes de transformadores de distribuição. A Tabela 3 apresenta de forma detalhada todas as características dos transformadores necessários à modelagem da rede. Excetos os já inclusos no trabalho Ronielli (2021).

Características dos transformadores						
N°	Nome	kVA	Z (%)	Conexão	V1/V2 (kV)	Z (estimados)
1	Trafo 103	30	3.26	Δ-Υ	13,8/0.22	Z estimado
2	Trafo 104	45	3.3	Δ-Υ	13,8/0.22	-

Tabela 3 - Relação dos transformadores e pontos de carga em MT

3	Trafo 105	30	3.35	Δ-Υ	13,8/0.22	-
4	Trafo 106	30	3.27	Δ-Υ	13,8/0.22	-
5	Trafo 107	45	3.4	Δ-Υ	13,8/0.22	-
6	Trafo 108	45	3.33	Δ-Υ	13,8/0.22	-
7	Trafo 109	30	3.25	Δ-Υ	13,8/0.22	Z estimado
8	Trafo 110	75	3.56	Δ-Υ	13,8/0.22	Z estimado
9	Trafo 111	150	3.59	Δ-Υ	13,8/0.22	-
10	Trafo 112	112,5	3.54	Δ-Υ	13,8/0.22	-
11	Trafo 113	75	3.31	Δ-Υ	13,8/0.22	-
12	Trafo 114	75	3.33	Δ-Υ	13,8/0.22	Z estimado
13	Trafo 115	75	3.32	Δ-Υ	13,8/0.22	-
14	Trafo 116	75	3.32	Δ-Υ	13,8/0.22	-
15	Trafo 117	75	3.33	Δ-Υ	13,8/0.22	Z estimado
16	Trafo 118	150	3.58	Δ-Υ	13,8/0.22	Z estimado
17	Trafo 119	30	3.26	Δ-Υ	13,8/0.22	-
18	Trafo 120	30	3.29	Δ-Υ	13,8/0.22	-
19	Trafo 121	30	3.27	Δ-Υ	13,8/0.22	-
20	Trafo 122	30	3.27	Δ-Υ	13,8/0.22	-
21	Trafo 123	75	3.35	Δ-Υ	13,8/0.22	Z estimado
22	Trafo 124	75	3.36	Δ-Υ	13,8/0.22	Z estimado
23	Trafo 125	75	3.36	Δ-Υ	13,8/0.22	-
24	Trafo 126	45	3.31	Δ-Υ	13,8/0.22	-
25	Trafo 127	75	3.35	Δ-Υ	13,8/0.22	Z estimado
26	Trafo 128	75	3.35	Δ-Υ	13,8/0.22	-
27	Trafo 129	45	3.36	Δ-Υ	13,8/0.22	-
28	Trafo 130	45	3.34	Δ-Υ	13,8/0.22	Z estimado
29	Trafo 131	75	3.34	Δ-Υ	13,8/0.22	Z estimado
30	Trafo 132	45	3.29	Δ-Υ	13,8/0.22	-

Fonte: Do autor (2021)

3.3.3 Características dos cabos

Os dados dos cabos de média tensão, como comprimento e área da seção transversal, foram coletados para todos os trechos da modelagem. Os dados dos cabos de baixa tensão não foram obtidos em campo, quando necessário foram calculados conforme a potência dos transformadores alimentadores. Na UFLA, são utilizados cabos de média tensão isolados com seção transversal de #150 mm² e de #50 mm² isolação de 15 kV. A rede elétrica principal possui cabos de #150 mm² e em alguns trechos, o cabo possui seção transversal de #50mm².

Não foi possível identificar os fabricantes dos cabos, portanto, foi utilizado como referência um fabricante nacional de cabos de média tensão. A inserção correta dos parâmetros minimiza as intercorrências no cálculo do fluxo de potência. Na Figura 5, está a representação de uma parcela dos trechos com cabo cuja seção transversal é de # 150 mm² representados em laranja e os trechos com seção transversal de # 50 mm² representados em azul.

Figura 5 - Representação dos trechos com cabos de 50mm² e 150mm²

Fonte: Do autor (2021)

As principais características dos cabos de baixa tensão e de média tensão estão relacionados respectivamente nas tabelas 4 e 5.

Cabos de baixa tensão					
Seção transversal do	Cabos por fase	Rca por fase	XL por fase		
cabo (mm ²)					
35	1	0,630	0,110		
50	1	0,470	0,110		
95	1	0,0230	0,100		
120	1	0,190	0,100		
240	1	0,094	0,098		

Tabela 4 - Dados técnicos dos cabos de baixa tensão

Fonte: Prysmian (2019)

Cabos de média tensão						
Seção transversal doCabos por faseRca por faseXL por fase						
cabo (mm ²)						
50	1	0,495	0,141			
120	1	0,197	0,124			
150	1	0,161	0,120			

Fonte: Prysmian (2019)

3.3.4 Levantamento das instalações fotovoltaicas e características técnicas

A UFLA possui algumas usinas de microgeração solar fotovoltaica espalhadas pelo campus. Algumas delas são os bicicletários com pequenas quantidades de geração, uma usina localizada na Avenida Sul, próxima ao prédio da ABI e uma miniusina localizada no estacionamento do centro de eventos. Os pontos de geração dos bicicletários não foram modelados por se tratar de pontos com capacidade de geração reduzidas. As usinas da ABI e do centro de eventos por serem de maior relevância foram modeladas e inseridas no estudo de fluxo de potência.

3.3.4.1 Usina solar fotovoltaica da ABI

A usina da ABI, possui um total de 4 inversores fotovoltaicos com capacidade total de 19 kW. Existem diversos tipos e potências de módulos, no entanto, eles não serão inseridos no Modelo, visto que o sistema fotovoltaico é modelado como fonte de potência constante. Neste caso, apenas as informações dos inversores são relevantes. São quatro inversores da fabricante Fronius, três com 5 kW de potência cada e um inversor e um com 4 kW de potência.

Para esta quantidade de geração não serão feitos estudos aprofundados uma vez que a geração é muito menor do que as cargas circunvizinhas. A seção transversal do cabo que conecta a microusina ao transformador 13,8/0,22 kV é de 35 mm². A geração é modelada conforme linha de código a seguir:

New PVSystem.ABI_1 phases=3 bus1=QDABI kV=0.22 kVA=5 irradiance=1 Pmpp=5 pf=1 %cutin=0.1 %cutout=0.1.

3.3.4.2 Usina Solar fotovoltaica próxima ao centro de eventos

Esta miniusina solar fotovoltaica é de maior relevância por se tratar de uma capacidade de geração e fluxo de potência com valores elevados. No total são 4080 módulos fotovoltaicos de 335 Wp cada, distribuídos em 34 inversores de 36 kW cada, ou seja, são 120 módulos fotovoltaicos por inversor, totalizando uma potência instalada de 1224 kW em inversores. A Figura 6 apresenta a usina na sua 2° fase de construção.

Figura 6 - Miniusina fotovoltaica da UFLA

Fonte: UFLA (2021)

A usina conta com abrigos solares espalhados na planta, de modo a abrigar os inversores. Cada abrigo solar possui um quadro de distribuição (QD) que concentra os inversores. Os componentes que compõe a usina são detalhados a seguir:

 a) Módulos fotovoltaicos: os módulos fotovoltaicos da usina são de fabricação da Canadian solar, com potência unitária de 335 Wp, policristalinos, totalizando 1366,80 kWp. Os dados em STC dos módulos são mostrados na Tabela 6.

Características	Valor	Unidade
Tolerância	-0/+5	Wp
Comprimento	1,96	m
Largura	0,992	m
Superfície	1,944	m ²
Eficiência	17,49	%
Peso	22,4	kg
Corrente Curto Circuito (ISC)	9,54	А
Tensão de circuito aberto (VOC)	45,80	V
Corrente no ponto de máxima potência	8,96	А
(IM)		
Tensão no ponto de máxima potência	37,40	V
(VM)		
Coeficiente térmico de potência máxima	-0,400	%_/°C
Coeficiente Térmico de (ISC)	0,050	%/°C
Coeficiente Térmico de (VOC)	-0,310	%/°C

Tabela 6 – Características dos módulos fotovoltaicos

Fonte: Do autor (2021)

b) Inversores: São de fabricação da Sungrow, no total são 34 inversores com potência unitária de 36 kW, trifásicos, com saída AC em 380 Vca, somando uma potência nominal de 1224 kW. Os dados técnicos são apresentados na Tabela 7 a seguir.

Fabricante	SUNGROW
Modelo	SG36KTL-M
Conexão à rede	Trifásico
Tensão de conexão	380 V
Range tensão de saída	310480 V
Potência nominal saída p/ FP=1	36 kW
Máxima corrente de saída	53,5 A
Frequência	50/60 Hz
Range de frequência	4555 - 5565 Hz
Fator de Potência nominal	>0.99, adj. ± 0.8
Taxa de distorção harmônica	<3,0%
Eficiência Europeia	98,3%
Proteção antiilhamento	sim
Fonte: Do autor (2	021)

Tabela 7 – Características dos inversores

c) Transformador 0,38/13,8 kV: o transformador elevador 0,38/13,8 kV será instalado exclusivamente para atendimento à usina fotovoltaica. Trata-se de um transformador de 1,5 MVA com o lado de baixa ligado ao painel geral da geração e o lado de alta, conectado à rede de 13,8 kV da UFLA. A Figura 7 apresenta a placa com os dados do transformador.

		TR	ANSF	OR	MADO	R SECO
N.º SÊR TIPO T POTÊN FATOR IMPED/	RIE 1.19 ISET AL ICIA 15 K 1 ANCIA À	8.048 1500/15 00 / -	1,1 kva	(AN)	/AF) 13800 V	DATA FABRIC. OUT/19 FREQUÊNCIA 60 Hz IP 00 FASES 3 NORMA NBR 5356-11
TENS	ÃO SUP	ERIOR		TER H1 -	MINAIS H2 - H3	
VOLTS	I(A) AN	I(A) AF	PAIN	EL LI	GAÇÃO	-19 -20 -2
13.800	62,76	-	10 - 13	11 - 1	4 12 - 15	13 -14 -1
13.200	65,61	1.2	13-7	14-	8 15-9	10 11 11
12.600	68,73		7 - 16	8-1	7 9-18	-7 -8 -9
12.000	72,17		16-4	17 -	5 18-6	
11.400	75,97		4 - 19	5-2	0 6-21	• H1 • H2 • H3
TEN	ISÃO IN	FERIOR	×	TERN	INAIS	
1	VOLTS			I (A)		
3	80/220		2	.279,0	01	
			A	١T	BT	DIAGRAMA FASORIAL Dyn
ELEV.	TEMP.	ENROL.	10	0°C	100°C	H2 X2
CLAS	SE MAT	ISOL.	F-1	55°C	F-155°C	x1-x0
CLASS	E DE IS	OLAÇÃ	D 15	kV	1,1 kV	H1 H3 X3
TENS	ÃO APL	ICADA	34	kV	3 kV	
	NBI		95	kV	-	
MASSA NSTRU PI Nº 40	TOTAL IÇÕES I 125-2	3236 K Nº MI- 02	3-09			

Figura 7 – Placa do transformador usina fotovoltaica

Fonte: Ronielli (2021)

- d) Quadros de distribuição (QD): Em cada abrigo solar existe um quadro geral e a alocação dos inversores solares, além dos dispositivos de proteção como disjuntores e DPS (dispositivos de proteção contra surtos elétricos).
- e) Cabos de baixa tensão em 380 V: o lado AC dos inversores é conectado a um quadro de distribuição interno ao abrigo solar por meio de cabos com seção transversal de 16 mm², isolação 0,6/1 kV HERP. Os cabos que conectam o QD ao transformador elevador de 0,38/13,8 kV, foram definidos no projeto da UFLA e instalados no local. São cabos com seção transversal de 120 mm², isolação 0,6/1 kV HERP.

3.3.5 Curvas de demanda de energia elétrica da Universidade

Para fazer a simulação do fluxo de potência da rede elétrica de distribuição, foi necessário analisar a quantidade de energia consumida na Universidade, bem como os horários de maior e menor consumo. Foram analisadas as curvas de demanda fornecidas pela Cemig do ano de 2019 conforme Figura 8, pois em 2020 devido a pandemia a universidade trabalhou com seu consumo de energia reduzido.

Alguns cenários foram escolhidos, seguindo alguns critérios como: período com atividades acadêmicas normais, finais de semana, e períodos de férias. Tais critérios são determinísticos e representam o perfil de consumo da universidade ao longo do ano, evidenciando os períodos de maior consumo, bem como os de menor consumo.

Figura 8 - Perfil de demanda-UFLA

Fonte: Cemig (2019)

3.3.6 Distribuição das cargas nos transformadores

Para determinar a demanda individual de cada transformador, foi necessário modelar o consumo das cargas, pois não existe medições disponíveis na UFLA. Para definir alguns critérios foi preciso calcular a média e desvio padrão, com isso seguimos algumas considerações:

a) Distribuição das cargas: assumiu-se que o carregamento dos transformadores deve seguir um perfil com distribuição estatística normal.

b) Carregamento Médio (CM): obtido por meio da relação entre a potência total instalada de transformadores (Ptot) e a demanda consumida em (kVA) fornecida pela CEMIG, de forma que:

$$CM (\%) = Demanda(kVA) / P_{tot} (kVA) * 100$$
(3.1)

c) Desvio padrão (σ): obtido de forma analítica por meio das características da rede de distribuição da UFLA, levando em consideração os seguintes pontos:

Os transformadores da rede foram dimensionados para atender as futuras expansões da UFLA,
e, portanto, não ultrapassam carregamento de 50%;

 Os cenários que representam a demanda máxima ocorrem durante a semana. Nestes cenários o desvio padrão deve ser maior e foi considerado igual a 8%;

- Os cenários que representam a demanda mínima ocorrem nos finais de semana. Nestes cenários foi considerado um desvio padrão de 2% entre os carregamentos dos transformadores.

Para atender o levantamento de cargas utilizamos as seguintes premissas: a $PT_{tot} =$ 7422,5 kVA, refere-se à potência dos transformadores e 1826 kVA refere-se a máxima demanda em cargas da universidade. Os valores de cargas foram levados em consideração no período de 9 h e 16 h, nesse mesmo intervalo ocorre a máxima geração de energia fotovoltaica.

Através desses valores de carga e potência foi possível criar alguns cenários para análise, entre a demanda mínima e demanda máxima, esses cenários são apresentados na Tabela 8, e segue alguns critérios conforme a equação 3.2.

$$CM - 3\sigma < CT < CM + 3\sigma \tag{3.2}$$

onde, CT é o carregamento do transformador.

Dessa forma, um desvio padrão de 8% garante que os dados de carregamento fiquem entre 0 < CT < 50%, conforme característica de potência nominal da universidade nos dias de maior consumo de energia. Já o desvio padrão de 2% garante que os dados de carregamento fiquem entre 0 < CT < 15%, conforme característica de potência nominal da universidade nos dias de menor consumo de energia.

Após estas definições, quatro cenários distintos foram escolhidos para análise dos dados, o carregamento médio e desvio padrão irão representar a distribuição normal de probabilidades para cada caso a seguir: a) Cenário A: Média igual à demanda mínima, obtida das curvas de demanda no período de amostragem, com desvio padrão de 2%;

b) Cenário B: Média igual à demanda máxima, obtida das curvas de demanda no período de amostragem, com desvio padrão de 8%;

c) Cenário C: Média com 20% abaixo da demanda mínima, com desvio padrão de 2%;

d) Cenário D: Média com 20% acima da demanda máxima, com desvio padrão de 8%.

Cabe ressaltar que, o desvio padrão representa a variabilidade das cargas. Quanto maior o desvio padrão, mais heterogênea é a distribuição do consumo. Quanto menor o desvio padrão, mais homogêneo é o consumo. O fator de potência (FP), e sua distribuição ocorrerá de forma análoga ao carregamento dos transformadores. A Tabela 8 apresenta os valores das médias calculadas e demanda (kVA) para cada cenário, bem como o desvio padrão e fator de potência.

Cenário	Demanda (kVA)	Média do	Desvio Padrão	Média FP
		intervalo (%)	%	
А	494	6,66	2	0,92
В	1826	24,61	8	0,92
С	395	5,33	2	0,92
D	2191	29,53	8	0,92

Tabela 8 - Média e desvio padrão para a distribuição normal de probabilidades

Fonte: Do autor (2021)

4 RESULTADOS E DISCUSSÕES

São apresentados nesta sessão os resultados dos estudos de fluxo de potência obtidos após aplicação da metodologia descrita anteriormente. Os cenários criados devem representar a variabilidade da demanda por energia elétrica.

4.1 Modelo do sistema de distribuição da UFLA no OpenDSS

Na rede elétrica da UFLA foram coletados todos os dados dos componentes elétricos necessários para a simulação, e modelados no software OpenDSS. Foram inseridos dados dos cabos, transformadores, cargas, do sistema fotovoltaico instalado no campus e demais itens pertinentes ao estudo. Parte dos trechos da rede da universidade e os sistemas fotovoltaicos, já foram modelados no trabalho de Oliveira (2021), e são necessários para compor esse trabalho, pois o mesmo visa concluir a modelagem da rede da universidade.

A Figura 9 mostra o fluxo de potência de forma radial, representando apenas um cenário com cargas, com o objetivo de verificar as condições atuais da rede da universidade.

Para este cenário o total de cargas é igual a 1826 kVA, foi utilizado a demanda máxima obtida das curvas do período de amostragem, conforme Tabela 8. O sistema é representado com linhas em escala de corrente, ou seja, as linhas mais grossas representam trechos mais carregados, os triângulos em vermelho são as representações dos transformadores e em amarelo são as representações das usinas fotovoltaicas. A escala é equivalente a um fluxo de potência de 500 kW.

Figura 9 - Circuito da UFLA modelado no OpenDSS com fluxo radial

Fonte: Do autor (2021) OpenDSS

Para o estudo do fluxo de potência e análises de possíveis impactos na rede elétrica, é importante observar algumas características físicas e técnicas da instalação do campus, um desses fatores é o consumo. A rede elétrica em MT da UFLA é toda modelada em 13,8 kV, equivalente a 1,0 pu.

Percebe-se pela Figura 9, que a saída do transformador principal (o alimentador) apresenta o máximo fluxo de potência, pois esse trecho alimenta todas as cargas. A intensidade vai reduzindo ao longo do sistema, indicando a distribuição do fluxo de potência de forma radial. O estudo de fluxo de potência inicial apresenta alguns dados como a máxima e mínima tensão do circuito, potência ativa e potência reativa, perdas ativas e perdas reativas.

A Tabela 9 mostra esses resultados, extraídos do cálculo do fluxo de potência por meio do software OpenDSS.

TABELA COM OS PARÂMETROS DE REDE				
Descrição	Resultados			
Total de GD (kW)	Sem GD			
Máxima tensão (pu)	0,9955			
Mínima tensão (pu)	0,9859			
Total de potências em cargas (kVA)	1826			
Total de potência reativa (kVAr)	220,638			

Tabela 9 - Resultado do fluxo de potência para o sistema radial sem GD.

Total de perdas ativas (kW)	9,02
Total de perdas reativas (kVAr)	2,347

Fonte: Do autor (2021) OpenDSS

Os resultados indicam que a máxima tensão do sistema para estas condições é de 0.9955 pu. e ocorre principalmente na saída da subestação principal (alimentador). A mínima tensão é de 0,9859 pu, e ocorre no secundário do transformador situado à rua José Maria Alves. Este transformador encontra-se a aproximadamente 3,41km da subestação de entrada.

4.2 Cenário A: análises com carregamento médio de 6,66%

Para o cenário A o cálculo da distribuição normal é baseado na demanda mínima (6,66%), obtida das curvas de demanda no período de amostragem. Tais demandas ocorrem principalmente nos finais de semana períodos de férias e feriados.

Na tabela 15 (Apêndice A), constam as potências finais de carregamento dos transformadores com base na distribuição normal. Esses dados foram inseridos na modelagem do OpenDSS. A Figura 10 apresenta os valores com o carregamento de cada transformador.

Figura 10 - Potência de carregamento dos transformadores em kVA, cenário A

Fonte: Do autor (2021) openDSS

O carregamento total para cenário A é de 503,66 kVA. Os dados do carregamento CT ficam dentro do intervalo definido, bem próximo da demanda registrada no período conforme Tabela 8, que é de 494 kVA. Para este cenário é importante ressaltar que como a universidade está com a carga mínima e máxima geração, parte do fluxo de energia é injetada na rede da concessionária, como havia sido previsto anteriormente. As usinas fotovoltaicas alimentam todas as cargas, além de gerar energia excedente. A Figura 11 mostra o fluxo de potência com todas as modelagens atendidas. O sistema é representado com linhas em escala de corrente, ou seja, as linhas mais grossas representam trechos mais carregados. A escala é equivalente a um fluxo de potência de 500kW.

Figura 11 - Circuito da UFLA modelado no OpenDSS com fluxo radial

Fonte: Do autor (2021) OpenDSS

Outro aspecto analisado são as perdas, a Figura 12 representa as perdas em escala, elas são maiores nos trechos com cabos de média tensão com seção transversal de 50 mm², principalmente nos trechos dos circuitos próximos ao departamento de engenharia agrícola, e nos trechos que ficam nas proximidades do centro de eventos, próximos a usina fotovoltaica, que devido ao sistema ser de forma radial e seu arranjo modelado nesse perfil, esse é o único caminho onde essa energia passa alimentando toda universidade, e retornando para rede da concessionária.

Fonte: Do autor (2021) OpenDSS

Analisou-se novamente os estudos de fluxo de potência inicial para o cenário A, os dados de máxima e mínima tensão do circuito, potência ativa e potência reativa, perdas ativas e perdas reativas. A Tabela 10 mostra esses resultados, extraídos do cálculo do fluxo de potência por meio do software OpenDSS.

TABELA COM OS PARÂMETROS DE REDE				
Descrição	Resultados			
Total de GD (kW)	1243			
Máxima tensão (pu)	1,018			
Mínima tensão (pu)	0,9867			
Total de potências em cargas (kVA)	503,66			
Total de potência ativa injetada na rede	720			
(kW)				
Total de potência reativa (kVAr)	291			
Total de perdas ativas (kW)	18,51			
Total de perdas reativas (kVAr)	68,11			

Tabela 10 - Resultado do fluxo de potência de forma radial cenário A.

Fonte: Do autor (2021) OpenDSS

Os resultados indicam que a máxima tensão do sistema para estas condições é de

1,018 pu. e ocorre principalmente na saída dos painéis da GD, em 380 V, elevação de 0,094% em relação ao cenário sem inserção de GD. A mínima tensão é de 0,9867 pu. e ocorre no secundário do transformador 99, situado à Av. Sul, de frente ao prédio da ABI. Este transformador encontra-se a aproximadamente 1,47 km da subestação de entrada.

As correntes para as fases A, B e C na saída da subestação são de 32,55 A por fase, uma vez que uma distribuição equilibrada de cargas é considerada. Lembrando que esta corrente é referente à injeção de energia na rede da concessionária, considerando a máxima geração fotovoltaica. Caso a geração diminua, essa injeção de energia na rede irá diminuir.

O objetivo desta análise foi o de verificar o comportamento do fluxo de potência e avaliar os perfis de tensão e perdas para as condições específicas. Com a mínima carga e maior geração, haverá um maior nível de energia injetada na rede, portanto, é nesta ocasião que ocorrem as elevações de tensão, porém ficou dentro dos limites estabelecidos para energia adequada, conforme Tabela 1.

Outro objeto de análise foi verificar o fator de potência para este cenário, como a GD injeta apenas energia ativa na rede da concessionária, e as cargas utilizadas foram todas atendidas pela geração fotovoltaica. A potência aparente calculada para este cenário é igual a 776 kVA, portanto, não houve redução no fator de potência conforme previsto para este cenário, FP é igual à 0,927.

4.3 Cenário B: análises com carregamento médio de 24,61%

Para o cenário B o cálculo da distribuição normal é igual à demanda máxima, obtida das curvas de demanda no período de amostragem, conforme Tabela 8. Tais demandas ocorrem principalmente nos dias úteis com período letivos.

Na Tabela 15 (Apêndice B) constam as potências finais de carregamento dos transformadores com base na distribuição normal. Esses dados foram inseridos na modelagem do OpenDSS. A Figura 13 apresenta os valores com o carregamento de cada transformador, obtidos através da distribuição normal.

Figura 13 - Potência de carregamento dos transformadores em KVA, cenário B

Fonte: Do autor (2021) OpenDSS

O carregamento total para este cenário é de 1891,46 kVA. Os dados do carregamento CT ficam dentro do intervalo definido, aproximando da demanda registrada no período que é de 1826 kVA.

Para este cenário é importante ressaltar que como a universidade está com carga máxima e máxima geração, as usinas fotovoltaicas alimentam parte das cargas e o restante da energia é fornecida pela concessionaria de energia. A Figura 14 mostra o fluxo de potência com todas as modelagens atendidas. O sistema é representado com linhas em escala de corrente, ou seja, as linhas mais grossas representam trechos mais carregados. A escala é equivalente a um fluxo de potência de 500 kW.

Figura 14 - Circuito da UFLA modelado no OpenDSS com fluxo radial, cenário B

Fonte: Do autor (2021) OpenDSS

Novamente foram observadas as perdas, a Figura 15 demonstra as perdas em escala. As perdas são maiores nos trechos com cabos de média tensão com seção transversal de 50mm², principalmente nos trechos dos circuitos próximos ao departamento de engenharia agrícola e nos circuitos de baixa tensão na rede da universidade de modo geral. Este cenário representa um dia de consumo com a carga máxima e com a usina fotovoltaica com geração máxima.

Figura 15- Perdas no cenário B

Fonte: Do autor (2021) OpenDSS

Analisou-se novamente os estudos de fluxo de potência inicial desta vez para o cenário B, os dados de máxima e mínima tensão do circuito, potência ativa e potência reativa, perdas ativas e perdas reativas. A Tabela 11 mostra esses resultados, extraídos do cálculo do fluxo de potência por meio do software OpenDSS.

TABELA COM OS PARÂMETROS DE REDE				
Descrição	Resultados			
Total de GD (kW)	1243			
Máxima tensão (pu)	1,003			
Mínima tensão (pu)	0,9559			
Total de potências em cargas (kVA)	1891,46			
Total de potência ativa fornecida pela rede	668			
(kW)				
Total de potência reativa (kVAr)	941			
Total de perdas ativas (kW)	25,869			
Total de perdas reativas (kVAr)	98,14			

Tabela 11 - Resultado do fluxo de potência de forma radial cenário B.

Fonte: do autor (2021) OpenDSS

Os resultados obtidos indicam que a máxima tensão do sistema para o cenário C é de 1,003 pu. e ocorre na saída dos painéis da GD, em 380V. A mínima tensão é de 0,9559 pu. e ocorre no secundário do transformador situado à Rua José Maria Alves, após a usina fotovoltaica. Este transformador encontra-se a aproximadamente 3,41km da subestação de entrada.

As correntes para as Fases A, B e C na saída da subestação é de 44,04A por fase. Lembrando que esta corrente é referente ao consumo de energia na rede da concessionária, considerando a máxima geração fotovoltaica. Caso a geração diminua, esse consumo da rede irá aumentar.

O objetivo desta análise é de verificar o comportamento do fluxo de potência e avaliar os perfis de tensão e perdas para as condições específicas, com a carga máxima e geração máxima, percebe-se que tanto a tensão máxima quanto a tensão mínima, ficaram dentro dos padrões estabelecidos pelo Módulo 8 PRODIST em se tratando de tensão adequada, conforme Tabela 1.

Novamente foi verificado o fator de potência, como a GD injeta apenas energia ativa

na rede da concessionária, e as cargas utilizadas neste cenário não foram todas atendidas pela geração de energia fotovoltaica. A potência aparente calculada é igual a 1154 kVA, houve uma grande redução no fator de potência, FP (0,578), esse valor encontrado está bem abaixo do permitido pela concessionária local, evidenciando um problema quando a universidade estiver na máxima geração e máxima potência, precisando de ajuste nestes parâmetros.

4.3 Cenário C: análises com carregamento médio de 5,33%

Para este cenário a média percentual utilizada no cálculo da distribuição normal é 20% menor que a demanda mínima registrada, obtida das curvas de demanda no período de amostragem. Tais demandas ocorrem principalmente nos finais de semana.

Na tabela 16 (Apêndice C), constam as potências finais de carregamento dos transformadores com base na distribuição normal. Esses dados serão inseridos na modelagem do OpenDSS. A figura 16 apresenta os valores com o carregamento de cada transformador, obtidos através da distribuição normal.

Figura 16 - Potência de carregamento dos transformadores em KVA, cenário C

Fonte: do autor (2021) OpenDSS

O carregamento total para este cenário C é de 397,5 kVA. Os dados do carregamento CT

ficam dentro do intervalo definido, bem próximo da demanda registrada no período que é de 395 kVA. Para este cenário é importante ressaltar que como a universidade está com a carga 20% abaixo da mínima e máxima geração, não houve diferença relevante comparando com o fluxo analisado no cenário A, parte do fluxo de energia é injetada na rede da concessionária, como havia sido previsto anteriormente. As usinas fotovoltaicas alimentam todas as cargas, além de gerar energia excedente. A Figura 17 mostra o fluxo de potência com todas as modelagens atendidas. O sistema é representado com linhas em escala de corrente, ou seja, as linhas mais grossas representam trechos mais carregados. A escala é equivalente a um fluxo de potência de 500kW.

Fonte: Do autor (2021) OpenDSS

Novamente foram analisadas as perdas, a Figura 18 representa as perdas em escala, elas são maiores nos trechos com cabos de média tensão com seção transversal de 50mm², principalmente nos trechos dos circuitos próximos ao departamento de engenharia agrícola, e nos trechos que ficam nas proximidades do centro de eventos próximos a usina fotovoltaica, que devido ao sistema elétrico da universidade ser de forma radial e seu arranjo modelado nesse perfil, esse é o único caminho onde essa energia passa alimentando toda universidade, e retornando para rede da concessionária.

Fonte: Do autor (2021) OpenDSS

Analisou-se novamente os estudos de fluxo de potência inicial para o cenário C, os dados de máxima e mínima tensão do circuito, potência ativa e potência reativa, perdas ativas e perdas reativas. A Tabela 12 mostra esses resultados, extraídos do cálculo do fluxo de potência por meio do software OpenDSS.

TABELA COM OS PARÂMETROS DE REDE				
Descrição	Resultados			
Total de GD (kW)	1243			
Máxima tensão (pu)	1,020			
Mínima tensão (pu)	0.9928			
Total de potências em cargas (kVA)	397,5			
Total de potência ativa injetada na rede	827			
(kW)				
Total de potência reativa (kVAr)	234			
Total de perdas ativas (kW)	18,38			
Total de perdas reativas (kVAr)	66,97			

Tabela 12 - Resultado do fluxo de potência de forma radial cenário C.

Fonte: Do autor (2021) OpenDSS

Os resultados indicam que a máxima tensão do sistema para estas condições é de 1,020 pu. e ocorre principalmente na saída dos painéis da GD, em 380V. A mínima tensão é de 0,9928 pu. e ocorre no secundário do transformador alimentador da ABI. Este transformador encontra-se a aproximadamente 1,49 km da subestação de entrada.

As correntes para as Fases A, B e C na saída da subestação são de 36,27A por fase. Lembrando que esta corrente é referente à injeção de energia na rede da concessionária, considerando a máxima geração fotovoltaica. Caso a geração diminua, esse valor também diminuirá.

O objetivo desta análise é o de verificar o comportamento do fluxo de potência e avaliar os perfis de tensão e perdas para as condições específicas. Com carga máxima e maior geração, haverá um maior nível de energia injetada na rede, portanto, é nesta ocasião que ocorrem as elevações de tensão.

Novamente foi verificado o fator de potência, como a GD, injeta apenas energia ativa na rede da concessionária, e as cargas utilizadas foram todas atendidas pela geração, a potência aparente calculada é igual a 859,46 kVA, não houve redução no fator de potência, ao contrário ele aumentou ficando próximo de 1, FP (0,96). Esse aumento se deve ao fato que para esse cenário a energia reativa fornecida pela concessionária foi menor em comparação com o cenário A.

4.4 Cenário D: análises com carregamento médio de 29,53%

Para o cenário D a média percentual utilizada no cálculo da distribuição normal é igual à 20% maior que a demanda máxima, obtida das curvas de demanda no período de amostragem. Tais demandas ocorrem principalmente nos dias úteis com período letivos.

Na Tabela 16 (apêndice D) constam as potências finais de carregamento dos transformadores com base na distribuição normal. Esses dados serão inseridos na modelagem do OpenDSS. A Figura 19 apresenta os valores com o carregamento de cada transformador, obtidos através da distribuição normal.

Figura 19 - Potência de carregamento dos transformadores em kVA, cenário D

Fonte: do autor (2021) OpenDSS

O carregamento total para este cenário é de 2157,45 kVA. Os dados do carregamento CT ficam dentro do intervalo definido, aproximando da demanda registrada no período que é de 2191 kVA. Para este cenário é importante ressaltar que como a universidade está com carga 20% acima da máxima e máxima geração, as usinas fotovoltaicas alimentam parte das cargas e o restante é fornecida pela concessionária de energia, como havia sido previsto anteriormente. A Figura 20 mostra o fluxo de potência com todas as modelagens atendidas. O sistema é representado com linhas em escala de corrente, ou seja, as linhas mais grossas representam trechos mais carregados. A escala é equivalente a um fluxo de potência de 500 kW.

Figura 20 - Circuito da UFLA modelado no openDSS com fluxo radial

Fonte: Do autor (2021) OpenDSS

Novamente foram observadas as perdas, a Figura 21 demonstra as perdas em escala. As perdas são maiores nos trechos com cabos de média tensão com seção transversal de 50mm², principalmente nos trechos dos circuitos próximos ao departamento de engenharia agrícola e nos circuitos de baixa tensão na rede da universidade de modo geral, devido ao carregamento dos transformadores. Este cenário representa um dia de consumo com 20% acima da carga máxima e com a usina fotovoltaica com geração máxima.

Fonte: Do autor (2021) OpenDSS

O estudo de fluxo de potência inicial apresenta alguns dados como a máxima e mínima tensão do circuito, potência ativa e potência reativa, perdas ativas e perdas reativas. A Tabela 13 apresenta os principais resultados para a modelagem do cenário D.

TABELA COM OS PARÂMETROS DE REDE				
Descrição	Resultados			
Total de GD (kW)	1243			
Máxima tensão (pu)	1,001			
Mínima tensão (pu)	0,93			
Total de potências em cargas (kVA)	2157,45			
Total de potência ativa fornecida pela rede (kW)	94,95			
Total de potência reativa (kVAr)	1021			
Total de perdas ativas (kW)	29,63			
Total de perdas reativas (kVAr)	111,07			

Tabela 13 - Resultado do fluxo de potência de forma radial cenário D.

Fonte: Do autor (2021) OpenDSS

Os resultados indicam que a máxima tensão do sistema para estas condições é de 1,001 pu. e ocorre principalmente na saída dos painéis da GD, em 380 V. A mínima tensão é de 0,93 pu. e ocorre novamente no secundário do transformador da ABI. Este transformador encontra-se a aproximadamente 1,49 km da subestação de entrada.

As correntes para as Fases A, B e C na saída da subestação é de 60,08 A por fase. Lembrando que esta corrente é referente ao consumo de energia na rede da concessionária, considerando a máxima geração fotovoltaica. Caso a geração diminua, esse consumo da rede irá aumentar.

Novamente repetiu-se as análises afins de verificar o comportamento do fluxo de potência e avaliar os perfis de tensão e perdas para as condições específicas, com a carga máxima e geração máxima, percebe-se que a tensão máxima está dentro dos padrões estabelecidos pelo PRODIST Modulo 8, porém percebemos que aumentando um pouco a carga a tensão mínima ficou no limite estabelecido, em se tratando de tensão adequada, conforme Tabela 1.

Novamente foi verificado o fator de potência, como a GD, injeta apenas energia ativa na rede da concessionária, e as cargas utilizadas não foram todas atendidas pela geração de energia fotovoltaica, a potência aparente calculada é igual a 1388,46 kVA, houve uma grande redução no fator de potência, FP (0,6776). Esse valor encontrado está bem abaixo do permitido pela concessionária local, evidenciando um problema quando a universidade estiver na máxima geração e máxima potência, precisando de ajuste nestes parâmetros.

4.5 Perfis de tensão

Os cenários analisados demonstraram que os níveis de tensão em MT praticamente não se alteraram com a inserção da geração fotovoltaica, mesmo com a diminuição do consumo, ou seja, cenário C com 5,33% de carga, muito pequeno frente à geração fotovoltaica. Na UFLA, a usina é diretamente conectada em média tensão, o que não afetou de forma direta os níveis de tensão, a Figura 22 representa os valores da tensão em pu para os cenários analisados.

Fonte: Do autor (2021) OpenDSS

Analisando o gráfico é possível constatar elevação de tensão no primário dos transformadores para os cenários A e C, estes cenários apresentam a demanda reduzida da

universidade, de maneira que a geração incide nessa elevação, pois sobram energia nesses cenários e é injetada na rede da concessionária.

Os cenários B e D apresentam o cenário de máxima carga, logo é possível perceber queda de tensões devido a esses consumos de cargas. Apesar da GD contribuir de forma significativa, a tensão sofre uma leve queda em alguns pontos da universidade, dependendo do carregamento do transformador.

CONCLUSÃO

A modernização do setor elétrico brasileiro através da inserção de fontes alternativas de energia, como energia fotovoltaica, combinada às redes inteligentes, podem contribuir para aumentar a oferta de energia elétrica no sistema, contudo é preciso analisar o impacto que estas novas fontes causam na rede de distribuição, principalmente relacionado às perdas técnicas.

O presente trabalho, apresentou uma das funcionalidades do software OpenDSS que permite a modelagem de redes elétricas de distribuição, bem como a utilização para uma crescente demanda de pesquisas e análises de redes com geração distribuída. Desta forma, por meio da metodologia utilizada, foi possível analisar diferentes topologias de rede, com diferentes equipamentos e/ou estruturas de cabos. Para validação da modelagem utilizou-se uma rede de distribuição elétrica real, da Universidade Federal de Lavras, e, na sequência, foi apresentado um cenário com a inserções de sistemas fotovoltaicos conectados à rede e seu impacto na mesma.

Foi possível observar nos cenários apresentados que com aumento das cargas e com a geração máxima de energia fotovoltaica, o fator de potência chegou a valores críticos, abaixo do permitido pela concessionária de energia, sendo um objeto de estudo para projetos futuros. Outra ideia para projetos futuros e a configuração de rede por ser de forma radial, fazer algumas alterações nos pontos de seccionamentos e analisar as perdas com essas alterações.

Utilizando o modelo desenvolvido, conclui-se que a inserção de sistemas fotovoltaicos altera a topologia da rede, podendo trazer benefícios para mesma, de acordo com seu grau de penetração, haja vista que ocorre o aumento do nível de tensão quando houve a inserção de GD, independentemente da quantidade de carga consumida.

BIBLIOGRAFIA

ANEEL. RESOLUÇÃO NORMATIVA No 482, DE 17 DE ABRIL DE 2012. 1. ed. [s.n.],2012. Disponível em: http://www2.aneel.gov.br/cedoc/ren2012482.pdf>.

ANEEL. Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional– PRODIST. 12. ed. [s.n.], 2021. Disponível em: https://www.aneel.gov.br/modulo-8>.

DUGAN, R. C. The Open Distribution System Simulator OpenDSS. Disponível em: <ftp://197.155.77.3/sourceforge/e/el/electricdss/OpenDSS/OpenDSSManual.pdf>.

FREITAS, Paulo R. R. Modelos avançados de análise de redes elétricas inteligentes utilizando software OpenDSS. 189f. 2015. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica). Universidade de São Paulo. São Paulo, 2015.

PRYSMIAN. Guia de dimensionamento: Média tensão, uso geal. In: . Prysmian Group, 2019. Disponível em: https://br.prysmiangroup.com/sites/default/files/atoms/files/Guia_Dimensionamento Media Tensao.pdf>.

D. Montenegro, R.C. Dugan, How to speed up your co-simulation using OpenDSS COM interface, in: OpenDSS Discussion Forum [online]. Available fromOpenDSS Distribution System Simulator.

RONNIELLI CHAGAS DE OLIVEIRA. Capacidade de hospedagem em redes de distribuição: modelagem e estudo de caso.

KAGAN, N. Introdução aos sistemas de distribuição elétrica. São Paulo: Blucher, 2005.328 p. ISBN 85-212-0355-1.

RIBEIRO, L. C. et al. Chapter 5 - modeling and simulation of active electrical distribution systems using the opendss. In: Abdel Aleem, S. H. et al. (Ed.). Decision Making Applications in Modern Power Systems. Academic Press, 2020. p. 121 – 152. ISBN 978-0-12-816445-7.

SUNGROW. Folha de dados inversor sungrow sg36ktl-m.In: Sungrow Power, 2021.Disponível em: https://br.sungrowpower.com/productDetail/2071.

UFLA. Mais de 5 milhões de reais investidos em novo sistema de energia. In:. Universidade Federal de Lavras, 2010. Disponível em: <www.ufla.br/dcom/2010/04/page/3/>.

UFLA. Ufla terá usina solar experimental em parceria com cemig. In: . Universidade Federal de Lavras, 2014. Disponível em: http://www.ufla.br/dcom/2014/07/03/ufla-tera-usina-solar-experimental-em-parceria-com-a-cemig/>.

UFLA. Iniciada implantação da segunda fase da usina fotovoltaica da ufla. In:. Universidade Federal de Lavras, 2020. Disponível em: https://ufla.br/noticias/institucional/13706-iniciada-implantacao-da-segunda-fase-da-usina-fotovoltaica-da-ufla.

UFLA. Sobre a ufla. In: . [s.n.], 2020. Disponível em: https://ufla.br/sobre>.

Apêndice A

Tabela 14: distribuição de cargas normais cenário A

Nome	(kVA)	Media	Desvio padrão	Carregamento	
		(70)	(%)	(kVA)	FP
TRAFO 26	30	6,66%	2%	1,75	0,89
TRAFO 27	75	6,66%	2%	2,68	0,93
TRAFO 28	75	6,66%	2%	2,47	0,99
TRAFO 31	112,5	6,66%	2%	9,39	0,93
TRAFO 53	75	6,66%	2%	3,89	0,92
TRAFO 54	75	6,66%	2%	2,6	0,91
TRAFO 55	30	6,66%	2%	2,91	0,93
TRAFO 56	30	6,66%	2%	3,05	0,92
TRAFO 57	112,5	6,66%	2%	7,18	0,88
TRAFO 58	30	6,66%	2%	2,54	0,9
TRAFO 59	75	6,66%	2%	5,91	0,91
TRAFO 60	300	6,66%	2%	21,18	0,91
TRAFO 61	300	6,66%	2%	28,99	0,92
TRAFO 62	112,5	6,66%	2%	5,96	0,92
TRAFO 63	150	6,66%	2%	9,15	0,94
TRAFO 64	112,5	6,66%	2%	5,48	0,89
TRAFO 65	150	6,66%	2%	10,34	0,92
TRAFO 68	75	6,66%	2%	5,24	0,94
TRAFO 69	75	6,66%	2%	3,87	0,91
TRAFO 70	150	6,66%	2%	13,23	0,94
TRAFO 71	112,5	6,66%	2%	7,05	0,95
TRAFO 72	150	6,66%	2%	14,16	0,88
TRAFO 73	75	6,66%	2%	3,64	0,95
TRAFO 74	75	6,66%	2%	4,18	0,93
TRAFO 75	112,5	6,66%	2%	5,9	0,97
TRAFO 76	112,5	6,66%	2%	3,59	0,93
TRAFO 77	150	6,66%	2%	7,11	0,93
TRAFO 78	75	6,66%	2%	6,67	0,93
TRAFO 79	75	6,66%	2%	5,38	0,93
TRAFO 80	75	6,66%	2%	6,19	0,94
TRAFO 81	75	6,66%	2%	6,08	0,92
TRAFO 82	150	6,66%	2%	9,78	0,94
TRAFO 83	75	6,66%	2%	3,45	0,95
TRAFO 84	75	6,66%	2%	4,74	0,91
TRAFO 85	75	6,66%	2%	6,19	0,93
TRAFO 86	30	6,66%	2%	1,45	0,95

TRAFO 87	150	6,66%	2%	2,23	0,93
TRAFO 88	150	6,66%	2%	10,64	0,93
TRAFO 89	45	6,66%	2%	2,4	0,97
TRAFO 90	45	6,66%	2%	3,5	0,94
TRAFO 91	500	6,66%	2%	37	0,92
TRAFO 93	300	6,66%	2%	13,44	0,92
TRAFO 94	45	6,66%	2%	3,31	0,92
TRAFO 95	112,5	6,66%	2%	5,86	0,9
TRAFO 96	75	6,66%	2%	2,99	0,93
TRAFO 97	75	6,66%	2%	7,33	0,93
TRAFO 98	150	6,66%	2%	15,12	0,87
TRAFO 99	75	6,66%	2%	5,08	0,91
TRAFO 100	75	6,66%	2%	3,5	0,9
TRAFO 101	75	6,66%	2%	7,14	0,9
TRAFO 102	45	6,66%	2%	4,34	0,89
TRAFO 103	30	6,66%	2%	1,08	0,89
TRAFO 104	45	6,66%	2%	3,24	0,94
TRAFO 105	30	6,66%	2%	2,48	0,93
TRAFO 106	30	6,66%	2%	2,02	0,92
TRAFO 107	45	6,66%	2%	1,4	0,89
TRAFO 108	45	6,66%	2%	4,01	0,95
TRAFO 109	30	6,66%	2%	0,8	0,92
TRAFO 110	75	6,66%	2%	4,59	0,91
TRAFO 111	150	6,66%	2%	12,54	0,9
TRAFO 112	112,5	6,66%	2%	12,1	0,96
TRAFO 113	75	6,66%	2%	4,68	0,9
TRAFO 114	75	6,66%	2%	3,85	0,91
TRAFO 115	75	6,66%	2%	5,25	0,89
TRAFO 116	75	6,66%	2%	8,46	0,93

TRAFO 117	75	6,66%	2%	7,48	0,92
TRAFO 118	150	6,66%	2%	10,74	0,93
TRAFO 119	30	6,66%	2%	2,24	0,94
TRAFO 120	30	6,66%	2%	2,62	0,9
TRAFO 121	30	6,66%	2%	3,05	0,93
TRAFO 122	30	6,66%	2%	2,48	0,93
TRAFO 123	75	6,66%	2%	3,81	0,91
TRAFO 124	75	6,66%	2%	7,01	0,86
TRAFO 125	75	6,66%	2%	3,85	0,9
TRAFO 126	45	6,66%	2%	3,33	0,93
TRAFO 127	75	6,66%	2%	3,34	0,94
TRAFO 128	75	6,66%	2%	4,6	0,95
TRAFO 129	45	6,66%	2%	2,32	0,95
TRAFO 130	45	6,66%	2%	4,77	0,91
TRAFO 131	75	6,66%	2%	6	0,9
TRAFO 132	45	6,66%	2%	2,27	0,96
TOTAL	7422,5	-	-	503,66	-

Fonte: Do autor (2021) OpenDSS

Apêndice B

Nome	(kVA)	Media	Desvio padrão	Carregamento	
		(/0)	(%)	(kVA)	FP
TRAFO 26	30	24,61%	8%	5,46	0,95
TRAFO 27	75	24,61%	8%	16,23	0,92
TRAFO 28	75	24,61%	8%	16,4	0,94
TRAFO 31	112,5	24,61%	8%	40,4	0,9
TRAFO 53	75	24,61%	8%	17,46	0,91
TRAFO 54	75	24,61%	8%	16,6	0,9
TRAFO 55	30	24,61%	8%	9,2	0,92
TRAFO 56	30	24,61%	8%	5,57	0,91
TRAFO 57	112,5	24,61%	8%	32,51	0,91
TRAFO 58	30	24,61%	8%	3,28	0,89
TRAFO 59	75	24,61%	8%	23,76	0,88
TRAFO 60	300	24,61%	8%	75,17	0,9
TRAFO 61	300	24,61%	8%	33,4	0,96
TRAFO 62	112,5	24,61%	8%	23,01	0,92
TRAFO 63	150	24,61%	8%	50,02	0,93
TRAFO 64	112,5	24,61%	8%	32,41	0,9
TRAFO 65	150	24,61%	8%	38,35	0,93
TRAFO 68	75	24,61%	8%	17,27	0,93
TRAFO 69	75	24,61%	8%	10,11	0,91
TRAFO 70	150	24,61%	8%	42,1	0,94
TRAFO 71	112,5	24,61%	8%	23,04	0,92
TRAFO 72	150	24,61%	8%	44,37	0,92
TRAFO 73	75	24,61%	8%	23,21	0,89
TRAFO 74	75	24,61%	8%	21,98	0,96
TRAFO 75	112,5	24,61%	8%	18,16	0,92
TRAFO 76	112,5	24,61%	8%	37,62	0,88
TRAFO 77	150	24,61%	8%	33,59	0,94
TRAFO 78	75	24,61%	8%	23,26	0,9
TRAFO 79	75	24,61%	8%	10,87	0,9
TRAFO 80	75	24,61%	8%	9,78	0,93
TRAFO 81	75	24,61%	8%	21,41	0,92
TRAFO 82	150	24,61%	8%	41,74	0,86
TRAFO 83	75	24,61%	8%	15,2	0,91
TRAFO 84	75	24,61%	8%	22,96	0,92
TRAFO 85	75	24,61%	8%	26,9	0,96
TRAFO 86	30	24,61%	8%	8,29	0,9
TRAFO 87	150	24,61%	8%	53,4	0,88

Tabela 15: distribuição de cargas normais cenário B

TRAFO 88	150	24,61%	8%	52,4	0,96
TRAFO 89	45	24,61%	8%	10,54	0,94
TRAFO 90	45	24,61%	8%	16,16	0,88
TRAFO 91	500	24,61%	8%	149,89	0,95
TRAFO 93	300	24,61%	8%	80,71	0,9
TRAFO 94	45	24,61%	8%	10,53	0,97
TRAFO 95	112,5	24,61%	8%	43,38	0,93
TRAFO 96	75	24,61%	8%	26,89	0,92
TRAFO 97	75	24,61%	8%	21,18	0,96
TRAFO 98	150	24,61%	8%	33,07	0,91
TRAFO 99	75	24,61%	8%	9,42	0,96
TRAFO	75	24 61%	00/	21.76	0.04
100	/5	24,0170	070	21,70	0,94
TRAFO	75	24,61%	8%	24,97	0,9
					-
102	45	24,61%	8%	10,79	0,9
TRAFO	20	24 6404	00/	2.02	0.02
103	30	24,61%	8%	3,82	0,93
TRAFO	45	24.61%	8%	15.51	0.93
104		21,01/0	0,0	10,01	0,00
105	30	24,61%	8%	8,17	0,94
TRAFO					
106	30	24,61%	8%	10,6	0,91
TRAFO	45	24.61%	8%	7 28	0.91
107	45	24,0170	070	7,20	0,51
TRAFO	45	24,61%	8%	8,15	0,88
109	30	24,61%	8%	3,94	0,91
TRAFO	75	24 610/	00/	0.20	0.0
110	/5	24,01%	070	9,59	0,9
TRAFO	150	24,61%	8%	35,12	0,93
111 TRAEO					-
112	112,5	24,61%	8%	20,87	0,93
TRAFO	75	24.6494	00/	17.00	0.00
113	/5	24,61%	8%	17,83	0,88
TRAFO	75	24.61%	8%	18.95	0.94
114				10,00	
115	75	24,61%	8%	23,11	0,96
TRAFO					
116	75	24,61%	8%	25,43	0,95
TRAFO	75	24 61%	8%	15 27	0 9/
117	,,,	27,01/0	0/0	13,37	0,04
112	150	24,61%	8%	33,97	0,97
1 110		1		1	1

TRAFO 119	30	24,61%	8%	8,66	0,9
TRAFO 120	30	24,61%	8%	3,96	0,91
TRAFO 121	30	24,61%	8%	8,35	0,95
TRAFO 122	30	24,61%	8%	4,87	0,92
TRAFO 123	75	24,61%	8%	16,34	0,92
TRAFO 124	75	24,61%	8%	22,41	0,93
TRAFO 125	75	24,61%	8%	21,94	0,92
TRAFO 126	45	24,61%	8%	16,93	0,95
TRAFO 127	75	24,61%	8%	17,41	0,9
TRAFO 128	75	24,61%	8%	15,87	0,92
TRAFO 129	45	24,61%	8%	7,21	0,9
TRAFO 130	45	24,61%	8%	10,48	0,88
TRAFO 131	75	24,61%	8%	16,38	0,91
TRAFO 132	45	24,61%	8%	6,96	0,93
TOTAL	7422,5	-	-	1891,46	-

Fonte: Do autor (2021) OpenDSS

Apêndice C

Nome	(kVA)	Media	Desvio padrão	Carregamento	
		(%)	(%)	(kVA)	FP
TRAFO 26	30	5,33%	2%	0,84	0,92
TRAFO 27	75	5,33%	2%	3,42	0,96
TRAFO 28	75	5,33%	2%	2,58	0,9
TRAFO 31	112,5	5,33%	2%	8,23	0,94
TRAFO 53	75	5,33%	2%	5,16	0,91
TRAFO 54	75	5,33%	2%	3,74	0,91
TRAFO 55	30	5,33%	2%	1,88	0,93
TRAFO 56	30	5,33%	2%	1,79	0,96
TRAFO 57	112,5	5,33%	2%	10,79	0,91
TRAFO 58	30	5,33%	2%	2,17	0,9
TRAFO 59	75	5,33%	2%	6,16	0,96
TRAFO 60	300	5,33%	2%	13,51	0,91
TRAFO 61	300	5,33%	2%	12,33	0,94
TRAFO 62	112,5	5,33%	2%	6,65	0,92
TRAFO 63	150	5,33%	2%	7,27	0,92
TRAFO 64	112,5	5,33%	2%	6,52	0,92
TRAFO 65	150	5,33%	2%	3,83	0,92
TRAFO 68	75	5,33%	2%	2,48	0,93
TRAFO 69	75	5,33%	2%	4,76	0,92
TRAFO 70	150	5,33%	2%	4,5	0,92
TRAFO 71	112,5	5,33%	2%	4,87	0,94
TRAFO 72	150	5,33%	2%	8,72	0,94
TRAFO 73	75	5,33%	2%	4,55	0,9
TRAFO 74	75	5,33%	2%	4,02	0,94
TRAFO 75	112,5	5,33%	2%	8,97	0,9
TRAFO 76	112,5	5,33%	2%	7,89	0,92
TRAFO 77	150	5,33%	2%	10,96	0,91
TRAFO 78	75	5,33%	2%	2,56	0,93
TRAFO 79	75	5,33%	2%	3,74	0,94
TRAFO 80	75	5,33%	2%	5,89	0,91
TRAFO 81	75	5,33%	2%	0,64	0,91
TRAFO 82	150	5,33%	2%	12,78	0,89
TRAFO 83	75	5,33%	2%	4,7	0,9
TRAFO 84	75	5,33%	2%	5,18	0,93
TRAFO 85	75	5,33%	2%	2,94	0,94
TRAFO 86	30	5,33%	2%	1,16	0,89
TRAFO 87	150	5,33%	2%	6,95	0,94

Tabela 16: distribuição de cargas normais cenário C

TRAFO 88	150	5,33%	2%	6,93	0,9
TRAFO 89	45	5,33%	2%	0,25	0,92
TRAFO 90	45	5,33%	2%	1,28	0,92
TRAFO 91	500	5,33%	2%	25,18	0,89
TRAFO 93	300	5,33%	2%	14,62	0,92
TRAFO 94	45	5,33%	2%	3,4	0,9
TRAFO 95	112,5	5,33%	2%	3,71	0,9
TRAFO 96	75	5,33%	2%	4,23	0,91
TRAFO 97	75	5,33%	2%	5,15	0,9
TRAFO 98	150	5,33%	2%	7,96	0,93
TRAFO 99	75	5,33%	2%	6,55	0,89
TRAFO	75	E 220/	20/	E /19	0.95
100	75	3,33%	270	5,40	0,85
TRAFO	75	5,33%	2%	7,38	0,93
		-			
102	45	5,33%	2%	2,35	0,9
TRAFO	2.0	5.000/	20/	4.55	0.04
103	30	5,33%	2%	1,55	0,91
TRAFO	45	5.33%	2%	3,44	0.97
104		3,337,6	270	3,11	0,07
105	30	5,33%	2%	1,69	0,92
TRAFO					
106	30	5,33%	2%	1,62	0,88
TRAFO	15	5 33%	2%	1 02	0.95
107	45	3,3370	270	1,92	0,95
TRAFO	45	5,33%	2%	1,01	0,91
109	30	5,33%	2%	1,67	0,93
TRAFO	75	F 220/	20/	2.60	0.04
110	75	5,33%	Ζ%	3,69	0,94
TRAFO	150	5,33%	2%	4,03	0,9
		,			,
112	112,5	5,33%	2%	6,24	0,91
TRAFO		E 2221	201		
113	/5	5,33%	2%	5,99	0,9
TRAFO	75	5.33%	2%	5,39	0.92
114				3,35	0,02
	75	5,33%	2%	2,27	0,92
TRAFO					
116	75	5,33%	2%	2,56	0,93
TRAFO	75	5 220/	20%	۸ ۵۵	0.0
117	د ،	5,55%	270	4,50	0,9
TRAFO	150	5,33%	2%	9,58	0,93
112		1	1		

TRAFO 119	30	5,33%	2%	1,31	0,9
TRAFO 120	30	5,33%	2%	1,8	0,88
TRAFO 121	30	5,33%	2%	2,69	0,91
TRAFO 122	30	5,33%	2%	2,58	0,91
TRAFO 123	75	5,33%	2%	1	0,94
TRAFO 124	75	5,33%	2%	4,92	0,93
TRAFO 125	75	5,33%	2%	4,97	0,93
TRAFO 126	45	5,33%	2%	2,69	0,93
TRAFO 127	75	5,33%	2%	3,99	0,94
TRAFO 128	75	5,33%	2%	3,03	0,93
TRAFO 129	45	5,33%	2%	2,85	0,88
TRAFO 130	45	5,33%	2%	2,01	0,93
TRAFO 131	75	5,33%	2%	5,24	0,93
TRAFO 132	45	5,33%	2%	1,61	0,94
TOTAL	7422,5	-	-	397,5	-

Fonte: Do autor (2021) OpenDSS

Apêndice D

Nome	(kVA) Media padr		Desvio padrão	Carregamento	
		(%)	(%)	(kVA)	FP
TRAFO 26	30	29,53%	8%	10,86	0,93
TRAFO 27	75	29,53%	8%	15,57	0,93
TRAFO 28	75	29,53%	8%	19,54	0,93
TRAFO 31	112,5	29,53%	8%	28,23	0,91
TRAFO 53	75	29,53%	8%	16,14	0,88
TRAFO 54	75	29,53%	8%	16,01	0,91
TRAFO 55	30	29,53%	8%	8,76	0,9
TRAFO 56	30	29,53%	8%	6,42	0,94
TRAFO 57	112,5	29,53%	8%	27,96	0,88
TRAFO 58	30	29,53%	8%	10,27	0,92
TRAFO 59	75	29,53%	8%	18,09	0,92
TRAFO 60	300	29,53%	8%	102,46	0,91
TRAFO 61	300	29,53%	8%	95,67	0,91
TRAFO 62	112,5	29,53%	8%	20,56	0,96
TRAFO 63	150	29,53%	8%	40,57	0,91
TRAFO 64	112,5	29,53%	8%	35,96	0,89
TRAFO 65	150	29,53%	8%	60,09	0,91
TRAFO 68	75	29,53%	8%	23,94	0,93
TRAFO 69	75	29,53%	8%	27,45	0,96
TRAFO 70	150	29,53%	8%	48,87	0,95
TRAFO 71	112,5	29,53%	8%	37,24	0,95
TRAFO 72	150	29,53%	8%	31,09	0,95
TRAFO 73	75	29,53%	8%	14,05	0,96
TRAFO 74	75	29,53%	8%	28,49	0,92
TRAFO 75	112,5	29,53%	8%	41,93	0,95
TRAFO 76	112,5	29,53%	8%	25,18	0,92
TRAFO 77	150	29,53%	8%	15,56	0,9
TRAFO 78	75	29,53%	8%	24,17	0,91
TRAFO 79	75	29,53%	8%	14,23	0,91
TRAFO 80	75	29,53%	8%	4,88	0,96
TRAFO 81	75	29,53%	8%	20,46	0,91
TRAFO 82	150	29,53%	8%	62,51	0,89
TRAFO 83	75	29,53%	8%	17,64	0,89
TRAFO 84	75	29,53%	8%	20,03	0,94
TRAFO 85	75	29,53%	8%	18,74	0,93
TRAFO 86	30	29,53%	8%	6,25	0,88
TRAFO 87	150	29,53%	8%	44,56	0,93

Tabela 17: distribuição de cargas normais cenário D

TRAFO 88	150	29,53%	8%	39,39	0,92
TRAFO 89	45	29,53%	8%	11,76	0,94
TRAFO 90	45	29,53%	8%	15,55	0,9
TRAFO 91	500	29,53%	8%	159,23	0,92
TRAFO 93	300	29,53%	8%	103,3	0,92
TRAFO 94	45	29,53%	8%	18,22	0,91
TRAFO 95	112,5	29,53%	8%	26,81	0,92
TRAFO 96	75	29,53%	8%	7,48	0,9
TRAFO 97	75	29,53%	8%	27,27	0,93
TRAFO 98	150	29,53%	8%	58,12	0,87
TRAFO 99	75	29,53%	8%	30,55	0,91
TRAFO 100	75	29,53%	8%	27,81	0,94
TRAFO 101	75	29,53%	8%	22,35	0,93
TRAFO 102	45	29,53%	8%	18,06	0,9
TRAFO 103	30	29,53%	8%	7,47	0,92
TRAFO 104	45	29,53%	8%	19,18	0,91
TRAFO 105	30	29,53%	8%	7	0,92
TRAFO 106	30	29,53%	8%	10,68	0,96
TRAFO 107	45	29,53%	8%	17,51	0,9
TRAFO 108	45	29,53%	8%	8,13	0,92
TRAFO 109	30	29,53%	8%	10,79	0,92
TRAFO 110	75	29,53%	8%	23,55	0,93
TRAFO 111	150	29,53%	8%	55,92	0,92
TRAFO 112	112,5	29,53%	8%	32,59	0,92
TRAFO 113	75	29,53%	8%	22,67	0,98
TRAFO 114	75	29,53%	8%	20,27	0,92
TRAFO 115	75	29,53%	8%	12,21	0,92
TRAFO 116	75	29,53%	8%	7,89	0,88
TRAFO 117	75	29,53%	8%	19,46	0,93
TRAFO 118	150	29,53%	8%	45,27	0,92

TRAFO 119	30	29,53%	8%	6,07	0,92
TRAFO 120	30	29,53%	8%	7,74	0,92
TRAFO 121	30	29,53%	8%	6,85	0,88
TRAFO 122	30	29,53%	8%	11,64	0,93
TRAFO 123	75	29,53%	8%	14,96	0,9
TRAFO 124	75	29,53%	8%	23,78	0,92
TRAFO 125	75	29,53%	8%	34,21	0,93
TRAFO 126	45	29,53%	8%	14,81	0,93
TRAFO 127	75	29,53%	8%	14,44	0,89
TRAFO 128	75	29,53%	8%	24,42	0,92
TRAFO 129	45	29,53%	8%	6,57	0,93
TRAFO 130	45	29,53%	8%	12,72	0,9
TRAFO 131	75	29,53%	8%	17,29	0,93
TRAFO 132	45	29,53%	8%	15,03	0,88
TOTAL	7422,5	-	-	2157,45	-

Fonte: Do autor (2021) OpenDSS

Apêndice E

T74

T75

0,99978

0,99979

Trafos	Cenário A	Cenário B	Cenário C	Cenário D
T26	0,99944	0,98175	1,0011	0,9758
T27	0,9998	0,98115	1,001	0,9789
T28	0,99981	0,9804	1,0012	0,978
T31	0,99871	0,9774	1,0009	0,9789
T53	0,99897	0,98033	0,99978	0,9781
T54	0,99838	0,9783	0,99924	0,9772
T55	0,99752	0,97848	0,99915	0,9764
T56	0,99755	0,98073	0,99914	0,9776
T57	0,9979	0,97761	0,99822	0,9764
T58	0,99722	0,98242	0,99859	0,9743
T59	0,9974	0,9777	0,99872	0,9766
T60	0,99693	0,977	0,99932	0,9744
T61	0,99663	0,98066	0,99919	0,97331
T62	0,99782	0,9795	0,99909	0,9776
T63	0,99786	0,9777	0,99928	0,97602
T64	0,99803	0,9779	0,99924	0,9758
T65	0,99768	0,9788	0,99969	0,97321
T68	0,99767	0,9799	0,99991	0,97523
T69	0,9985	0,98153	0,99952	0,97555
T70	0,99766	0,97865	1,0003	0,9757
T71	0,99898	0,9897	1,0001	0,97529
T72	0,99787	0,9779	1,0001	0,97786
T73	0,99966	0,979	1,0001	0,97937

	/			
T76	1,0003	0,9779	1,0007	0,97829
T77	1,02	0,9804	1,0006	0,9808
T78	0,9987	0,9778	1,0014	0,97834
T79	0,99946	0,9821	1,0009	0,97896
T80	0,99869	0,9821	1,0003	0,9814
T81	0,99944	0,9793	1,022	0,9776
T82	0,99974	0,98011	1,001	0,976
T83	1,0003	0,9817	1,0011	0,9782
T84	1,02	0,9797	1,0011	0,9778
T85	0,99743	0,9785	0,9993	0,9754
T86	0,99844	0,9788	0,99984	0,9778
T87	1,0005	0,9773	1,0012	0,9773
T88	0,99896	0,9785	1,0007	0,9772
T89	0,99971	0,98026	1,0019	0,9773
T90	0,99743	0,9758	0,99963	0,9743
T91	0,99662	0,9734	0,9987	0,9713
T93	0,99789	0,9762	0,99901	0,9726
T94	0,99753	0,9782	0,99861	0,9724
T95	0,99786	0,9769	0,99964	0,9772
T96	0,9981	0,9755	0,9989	0,9787
		-		

0,9807

0,98192

1,0001

1,0006

0,9747

0,97557

T97	0,99705	0,9783	0,9989	0,9743
T98	0,99726	0,9792	0,99909	0,9728
T99	0,99763	0,9816	0,99846	0,9729
T100	0,99842	0,9775	0,99909	0,974
T101	0,99761	0,9768	0,9987	0,9762
T102	0,99733	0,9804	0,99959	0,974
T103	0,99023	0,9667	0,99573	0,95652
T104	0,99696	0,9755	0,9977	0,9713
T105	0,98962	0,96	0,9972	0,93728
T106	0,99832	0,9812	0,99902	0,9734
T107	0,99695	0,9798	0,99965	0,97691
T108	0,99371	0,9689	0,99955	0,95803
T109	0,99727	0,9767	0,99918	0,97638
T110	0,99811	0,982	0,9996	0,9785
T111	0,99788	0,9803	0,99943	0,9774
T112	0,998	0,9797	0,99983	0,9774
T113	0,99805	0,9816	0,99932	0,9771
T114	0,99794	0,9808	0,99933	0,97854
T115	0,99749	0,9731	0,99984	0,9686
T116	0,99783	0,9773	0,9993	0,9762
T117	0,99808	0,9781	0,99925	0,9774
T118	0,9981	0,982	0,99961	0,9769
T119	0,99464	0,9778	0,9964	0,9681
T120	0,9972	0,977	0,9989	0,9697
T121	0,99567	0,9697	0,9987	0,9719
T122	0,99708	0,976	0,9979	0,9755
T123	0,99846	0,9802	0,99981	0,9787
T124	0,99848	0,9818	0,99959	0,9758
T125	0,9983	0,9812	0,99975	0,9792
T126	0,99841	0,9819	0,99949	0,9772
T127	0,99815	0,9801	0,99937	0,9765
T128	0,9979	0,9782	0,9987	0,9756
T129	0,99646	0,9756	0,9986	0,97449
T130	0,99698	0,9715	0,99929	0,9762
T131	0,99704	0,9774	0,99961	0,9794
T132	0,99682	0,9796	0,9985	0,97

Fonte: Do autor (2021) OpenDSS

RELATÓRIO FINAL DE CURSO Nº 11/2025 - CEENP (11.51.21)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 09/04/2025 18:00) MARCIO WLADIMIR SANTANA PROFESSOR ENS BASICO TECN TECNOLOGICO CTETTNP (11.50.36) Matrícula: ###520#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 11, ano: 2025, tipo: RELATÓRIO FINAL DE CURSO, data de emissão: 09/04/2025 e o código de verificação: cf8fb21b9d